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1. Introduction
1.1. Motivation
An analysis course for undergraduate students about ordinary differential equations
(ODE) usually includes some solution techniques for special types of equations that
can be solved explicitly together with the existence theorem of Peano and the existence
and uniqueness theorem of Picard-Lindelőf. Both give local results and differentiable
solutions. The right-hand side needs to be at least continuous.

One direction of research consists of delay differential equations (DDE). A DDE differs
from an ODE by allowing a dependence of the right-hand side on the past of the unknown.
One example from infection studies given in [Introduction HV93, p. 3] is

̇𝐼(𝑡) = 𝜆(𝐼(𝑡 − 𝐿1) − 𝐼(𝑡 − 𝐿2)) for 𝑡 ∈ ℝ, 𝐼(𝑡) ∈ ℝ>0, 𝐿1, 𝐿2 ∈ ℝ<0, 𝜆 ∈ ℝ>0.

This is a DDE with discrete delay as studied in Section 7.3. This is not covered by
the theorem of Picard-Lindelőf from usual undergraduate courses. There exist a big
variety of solution techniques and solution property analysis, most of them limited to
some classes of DDEs. For example [GP06] examines periodicity for equations with
discrete delay with the background of mechanical applications and considers operators on
function spaces of continuous function. Common topics are also stability and bifurcation,
as in [Gop92]. A list of examples as well as a historical overview can be found in [HV93]
which studies different types of DDEs like linear systems and equations of neutral type
with a long list of tools.

For partial differential equations (PDEs), the approach of Picard-Lindelőf and ex-
plicit solution formulas do not suffice in most cases. Functional analysis and in partic-
ular Hilbert space theory on the other hand is a great tool to show the existence and
uniqueness of solutions to many types of PDEs. Usually one gives up the requirement
of differentiability of the solution and replace it with the notion of weak differentiability.
A standard textbook on this is [Eva02].

The approach of [Kal+14] and my thesis uses suitable Hilbert spaces to formulate
a solution theory for a wide class of ordinary differential equations. This includes the
employment of weak differentiability. Then several types of delay differential equations
are relatively simple special cases and the main motivation for the Hilbert space approach
of the paper [Kal+14].

Applying the functional analysis notions of Hilbert space adjoints and weak differ-
entiability to ordinary and delay differential equations might appear to be unnecessary
complicated. Nevertheless, there are several reasons why it might be a reasonable alter-
native that can be taught in a seminar:

1. As just noted, being firm in Hilbert space theory is a strong background for PDEs
afterwards. Especially, the concept of weak differentiability becomes familiar.

2. Once we can state Picard-Lindelőf using Hilbert space operators, the central con-
traction idea can stand out in its simplicity. In the classical proof of Picard-Lindelőf
on the other hand, one has to take care of the domain of the involved Picard-iterates
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and restrict it to a small neighborhood of the initial time. The used space of con-
tinuous functions with the supremum norm is a Banach space. The 𝐿2-type spaces
are Hilbert spaces, which enlarges the available toolbox.

3. The classical versions of Peano and Picard-Lindelőf only consider the case of dif-
ferentiable solution and continuous right-hand sides. A wide range of applications
is not covered by this though. Some examples are given in the introduction of
[Háj79].

4. As mentioned above, classical solution theory is usually only local. In particular, it
is necessary to restrict the solution to a small interval in order to make the Picard-
iteration a contraction. Here, on the other hand, we will regard global solutions.
That means, that we always regard functions that are defined on the entire real
line. Instead of restricting the solution we choose the solution space appropriately.
In [Section 5.2 Kal+14, 28 ff.] an application to local problems is given, but this
will be beyond the scope of this paper.

With global in time solutions comes the notion of causality which captures the idea
that a solution up to any time cannot depend on the future but only on the past and
present. Hence, necessary properties of the differential equation that ensure causal
solution operators, are presented. For a wider view on causality, see [Lak+10] which
focusses solely on different types of causal differential equations.

1.2. Personal motivation
My aim is to give the reader a smooth guide to the outlined solution theory. This thesis
is mostly self-contained, presenting just the parts and cases of Hilbert space operator
theory needed.

My goal is to present not only statements and proofs but also ideas on why the
regarded theory is developed and how one can go about proving the statements. I filled
the gaps I found myself stuck in during studying the paper [Kal+14]. I hope that in
this way others can easily follow the presented thoughts. To support this connection to
[Kal+14], references to the respective sections are given throughout.

In order to limit the extend of this thesis, some topics of [Kal+14] are left out. They
are not essential to the central solution theory.

I am grateful for Professor S. Siegmunds invitation to study this topic and the con-
tinued motivation as well as for the very supporting supervision by Dr. S. Trostorff. I
also want to thank Niklas Jakob and Max Bender for their very detailed, valuable and
constructive remarks.

1.3. Structure
Based on the work of the previous chapters, the solution theory is presented in Section
5. At first, the existence and uniqueness of solutions is discussed. Then in Section 6 the
concept of causality is introduced.
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A solution theory for (differential) equations has to analyse conditions on the equa-
tion that can guarantee the existence and uniqueness of a solution in a set of solution
candidates. The candidates are a variant of 𝐿2-spaces with an exponential weight and
are introduced in Section 3. In order to allow distributions as right-hand sides, we em-
bed the weighted 𝐿2-spaces into so called extrapolation spaces. They are introduced in
Section 4. On the other hand, this also allows us to get a glimpse on regularity theory
in Section 5.2.

Since it is no more work to consider Hilbert space valued functions than ℂ valued
functions, we consider Hilbert space valued functions throughout. The background is
presented in Section A.

Since 𝐿2 includes non-differentiable functions, the question arises what differentia-
tion as an operator on 𝐿2 means. For this purpose we introduce differentiation as a
closable operator on the Hilbert space 𝐿2(ℝ). Hence the needed aspects on closures of
(unbounded) linear operators are introduced in Section 2. Since differentiation is firstly
defined on test functions, the density of test functions in 𝐿2(ℝ) needs to be shown, see
Section B. The extension to weighted 𝐿2 spaces is done in Section 3.2 while the further
extension to extrapolation spaces is done in Theorem 4.5.

After the general theory, some special cases that can be successfully tackled by the
developed solution theory are inspected. This includes ordinary differential equations
(Section 7.1), as well as delay differential equations with discrete (Section 7.3) and
continuous delay (Section 7.4).

1.4. Notation
Throughout the thesis we use the following conventions.

All vector spaces are vector spaces over ℂ. The theory works the same over ℝ though.
By 𝐿2(Ω, Σ, 𝜇; 𝑋) we denote the Hilbert space of square-integrable functions over the
measure space (Ω, Σ, 𝜇) mapping into the complex vector space 𝑋, factored out by
equality almost everywhere. For the usual case of ℝ with the Borel 𝜎-algebra and the
Lebesgue measure we write 𝐿2(ℝ; 𝑋) and omit the range of the functions in 𝐿2(ℝ) in
case of 𝑋 = ℂ.

For any function 𝑓 we write D(𝑓) for the domain of 𝑓.
All operators on vector spaces are linear. For a vector space 𝑉 we denote the vector

space of all linear functionals into ℂ by 𝑉 ′. For a Banach space 𝑋 over ℂ we denote the
Banach space of all linear continuous functionals into ℂ by 𝑋∗.

For a complex pre-Hilbert space 𝐻 we denote the inner product of 𝑓, 𝑔 ∈ 𝐻 by ⟨𝑓, 𝑔⟩𝐻.
If the space is clear from the context we may omit the index. The inner product is linear
in the first argument and conjugate linear in the second argument.

For two sets 𝐴 and 𝐵 we write 𝐴 ⊆ 𝐵 or 𝐵 ⊇ 𝐴 if 𝐴 is a subset of 𝐵 or equal to 𝐵.
We write 𝐴 ⊂ 𝐵 or 𝐵 ⊃ 𝐴 if 𝐴 is a proper subset of 𝐵, i. e. not equal. In (almost) all
cases of proper subsets in this thesis it is not of importance to exclude the equality case
though.

The imaginary unit is i. For a complex number 𝑧 = 𝑥 + i𝑦 we denote the real part by
Re 𝑧 ≔ 𝑥 and the complex part by Im 𝑧 ≔ 𝑦.
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2. Closed and closable operators
This section summarizes some results from [IV.4, VII.2 Wer11, pp. 343 sqq.] that we
will use to work with the differentiation operator 𝜕, which will be introduced later in
Section 2.2.

Definition 2.1 (Closed operator, [IV.4.1 Wer11, p. 156]). Let 𝑋 and 𝑌 be normed
spaces, 𝐷 ⊆ 𝑋 a subspace, 𝑇∶ 𝑋 ⊇ 𝐷 → 𝑌 linear. Then 𝑇 is called closed if for every
convergent sequence (𝑥𝑛)𝑛∈ℕ, in 𝐷, 𝑥𝑛 → 𝑥 ∈ 𝑋 with 𝑇 𝑥𝑛 → 𝑦 ∈ 𝑌, we have 𝑥 ∈ 𝐷 and
𝑇 𝑥 = 𝑦.

Note that this is weaker than continuity. Closedness of an operator 𝑇 can also be
viewed as closedness of its graph gr(𝑇 ) = {(𝑥, 𝑇 𝑥) | 𝑥 ∈ 𝐷} ⊆ 𝑋 × 𝑌 (under the norm
|||(𝑥, 𝑦)||| = ‖𝑥‖ + ‖𝑦‖) as one can check. (See [IV.4.2 Wer11, pp. 156 sq.].)

Definition 2.2 (Closable operator, Closure, [VII.2.1 Wer11, p. 343]). An operator
𝑇∶ 𝑋 ⊇ D(𝑇 ) → 𝑌 is called closable if there exists a closed extension 𝐵 of 𝑇, that
is 𝐵∶ 𝑋 ⊇ D(𝐵) → 𝑌, such that 𝐵 is closed and D(𝑇 ) ⊆ D(𝐵) and 𝐵|D(𝑇 ) = 𝑇. If 𝐵 is
the smallest closed extension, it is called the closure of 𝑇 and gr(𝐵) = gr(𝑇 ) (closure in
𝑋 × 𝑌). Hence we write 𝐵 = 𝑇 for the closure.

We write 𝑇 ⊆ 𝑆 for two operators 𝑇∶ 𝑋 ⊇ D(𝑇 ) → 𝑌, 𝑆∶ 𝑋 ⊇ D(𝑆) → 𝑌 if gr(𝑇 ) ⊆
gr(𝑆). That is, D(𝑇 ) ⊆ D(𝑆) and 𝑆|D(𝑇 ) = 𝑇.

From now on in this chapter we only consider operators on Hilbert spaces.
Closely connected to the concept of closed operators are adjoint operators. For con-

tinuous linear mappings 𝐴∶ 𝐻 → 𝐻 on Hilbert spaces there exist continuous adjoint
operators 𝐴∗ that satisfy

⟨𝐴𝑥, 𝑦⟩ = ⟨𝑥, 𝐴∗𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐻.

In the case of (unbounded) operators the adjoint operator can still be defined but one
has to be careful about the domain.

As a preparation we look at densely defined continuous operators first.

Lemma 2.3 (Continuous extension of continuous operators). Let 𝑋, 𝑌 be Hilbert spaces
and 𝑇∶ 𝑋 ⊇ D(𝑇 ) → 𝑌 be a densely defined, continuous operator. Then there is a unique
extension of 𝑇 to a continuous operator 𝑇 ∶ 𝑋 → 𝑌 (which is automatically the closure
of 𝑇).

Proof. In order to show that 𝑇 can be continuously extended to 𝑋, we want to show that
for all ̂𝑥 ∈ 𝑋 and all sequences (𝑥𝑖)𝑖∈ℕ in D(𝑇 ) that converge to ̂𝑥, the limit lim𝑖→∞ 𝑇 𝑥𝑖
exists and is independent of the choice of the 𝑥𝑖. Then

𝑇 ̂𝑥 ≔ lim
𝑖→∞

𝑇 𝑥𝑖

is well-defined and 𝑇 is the only continuous extension of 𝑇.
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Existence of the limit and continuity As (𝑥𝑖)𝑖∈ℕ is a Cauchy sequence and 𝑇 is
continuous, (𝑇 𝑥𝑖)𝑖∈ℕ is a Cauchy sequence as well: ‖𝑇 𝑥𝑖 − 𝑇 𝑥𝑘‖𝑌 = ‖𝑇 (𝑥𝑖 − 𝑥𝑘)‖𝑌 ≤
‖𝑇‖𝐿(𝑋,𝑌 ) ‖𝑥𝑖 − 𝑥𝑘‖. Now, 𝑌 is a Hilbert space, so (𝑇 𝑥𝑖)𝑖∈ℕ converges to some ̂𝑦 ∈ 𝑌
and by the limit definition of 𝑇, ‖𝑦‖𝑌 = ∥𝑇 ̂𝑥∥

𝑌
≤ ‖𝑇‖𝐿(𝑋,𝑌 ) ‖ ̂𝑥‖𝑋. That means, that 𝑇 is

continuous with the same operator norm as 𝑇.

Uniqueness Let (𝑥𝑖)𝑖∈ℕ and (𝑢𝑖)𝑖∈ℕ be two sequences in D(𝑇 ), both converging to
̂𝑥 ∈ 𝑋, then (𝑥𝑖−𝑢𝑖)𝑖∈ℕ converges to 0 and hence so does (𝑇 𝑥𝑖−𝑇 𝑢𝑖)𝑖∈ℕ = (𝑇 (𝑥𝑖−𝑢𝑖))𝑖∈ℕ,

because 𝑇 is continuous. This means lim𝑖→∞ 𝑇 𝑥𝑖 = lim𝑖→∞ 𝑇 𝑢𝑖, so 𝑇 is well-defined.

Linearity Let ̂𝑥, 𝑢̂ ∈ 𝑋, 𝜆 ∈ ℂ and and (𝑥𝑖)𝑖∈ℕ and (𝑢𝑖)𝑖∈ℕ be sequences in D(𝑇 )
converging to ̂𝑥 and 𝑢̂, respectively. Then 𝑥𝑖 + 𝜆𝑢𝑖 → 𝑥 + 𝜆𝑢 and therefore

𝑇( ̂𝑥 + 𝜆𝑢̂) = lim
𝑖→∞

𝑇 (𝑥𝑖 + 𝜆𝑢𝑖) = lim
𝑖→∞

(𝑇 𝑥𝑖 + 𝜆𝑇 𝑢𝑖)

= ( lim
𝑖→∞

𝑇 𝑥𝑖) + 𝜆 ( lim
𝑖→∞

𝑇 𝑢𝑖) = 𝑇 ̂𝑥 + 𝜆𝑇𝑢̂.

Lemma 2.4 (Well-definedness of the adjoint operator, [VII.2 Wer11, p. 344]). Let 𝑋, 𝑌
be Hilbert spaces and 𝑇∶ 𝑋 ⊇ D(𝑇 ) → 𝑌 be a densely defined operator. Then consider

D(𝑇 ∗) ≔ {𝑦 ∈ 𝑌 ∣ 𝑥 ↦ ⟨𝑇 𝑥, 𝑦⟩𝑌 continuous on D(𝑇 )} .

D(𝑇 ∗) is a linear subspace and for 𝑦 ∈ D(𝑇 ∗) we can extend 𝑓∶ 𝑥 ↦ ⟨𝑇 𝑥, 𝑦⟩𝑌 to a unique
continuous linear functional on 𝑋. Furthermore, there is a unique 𝑧 ∈ 𝑋 such that
⟨𝑇 𝑥, 𝑦⟩𝑌 = ⟨𝑥, 𝑧⟩𝑋 for all 𝑥 ∈ D(𝑇 ). We write 𝑇 ∗𝑦 ≔ 𝑧. 𝑇 ∗ ∶ 𝑌 ⊇ D(𝑇 ∗) → 𝑋 is a linear
operator.

Proof. Since ⟨·, ·⟩𝑌 is sesquilinear, D(𝑇 ∗) is a linear subspace of 𝑌. Let 𝑦 ∈ D(𝑇 ∗). Then
the mapping 𝑓∶ 𝑋 ⊇ D(𝑇 ) → ℂ defined by 𝑓(𝑥) = ⟨𝑇 𝑥, 𝑦⟩𝑌 is by definition densely
defined, linear and continuous. By Lemma 2.3 𝑓 has a unique continuous extension to
𝑋.

By the Fréchet-Riesz representation theorem (see [Theorem V.3.6 Wer11, p. 228])
there is a unique 𝑧 ∈ 𝑋 such that ⟨𝑇 𝑥, 𝑦⟩𝑌 = ⟨𝑥, 𝑧⟩𝑋 for all 𝑥 ∈ D(𝑇 ).

The linearity of 𝑇 ∗ follows from the uniqueness of 𝑧 in the equation above, the sesquilin-
earity of the inner product and the linearity of 𝑇.

Definition 2.5 (Adjoint operator, Self-adjoint, [VII.2.3 Wer11, p. 344]). The operator
described in Lemma 2.4

𝑇 ∗ ∶ 𝑌 ⊇ D(𝑇 ∗) → 𝑋

with

⟨𝑇 𝑥, 𝑦⟩ = ⟨𝑥, 𝑇 ∗𝑦⟩ for all 𝑥 ∈ D(𝑇 ), 𝑦 ∈ D(𝑇 ∗)

is the adjoint operator of 𝑇.
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If 𝑇 = 𝑇 ∗ (which implies D(𝑇 ) = D(𝑇 ∗) and 𝑋 = 𝑌), we call 𝑇 self-adjoint. 𝑇 is called
skew-self-adjoint if i𝑇 is self-adjoint.

For a complex number 𝑧 ∈ ℂ, 𝑧∗ is the complex conjugate. This notation makes sense,
since ⟨𝑧𝑥, 𝑦⟩ = ⟨𝑥, 𝑧∗𝑦⟩ for 𝑥, 𝑦 elements of a complex Hilbert space.

The adjoint operator has nice properties. First of all, it is closed:

Lemma 2.6 (Closedness of 𝑇 ∗, [VII.2.4 (a) Wer11, p. 345]). Let 𝑋, 𝑌 be Hilbert spaces
and 𝑇∶ 𝑋 ⊇ D(𝑇 ) → 𝑌 be a densely defined operator. Then the adjoint operator 𝑇 ∗ is
closed.

Proof. Let (𝑦𝑛)𝑛∈ℕ be a sequence in D(𝑇 ∗) with 𝑦𝑛 → 𝑦 ∈ 𝑌 and 𝑇 ∗𝑦𝑛 → ̂𝑥 ∈ 𝑋 for
𝑛 → ∞. Then for 𝑥 ∈ D(𝑇 )

⟨𝑇 𝑥, 𝑦⟩
(∗)
= lim

𝑛→∞
⟨𝑇 𝑥, 𝑦𝑛⟩ = lim

𝑛→∞
⟨𝑥, 𝑇 ∗𝑦𝑛⟩

= ⟨𝑥, ̂𝑥⟩
(∗)

⟹ 𝑥 ↦ ⟨𝑇 𝑥, 𝑦⟩ is continuous

where in (∗) we have used the continuity of ⟨·, ·⟩. This means 𝑦 ∈ D(𝑇 ∗) and 𝑇 ∗𝑦 = ̂𝑥,
as shown in Lemma 2.4.

Secondly, the adjoint of an operator is also the adjoint of the closure:

Lemma 2.7. Let 𝑋, 𝑌 be Hilbert spaces and 𝑇∶ 𝑋 ⊇ D(𝑇 ) → 𝑌 be a densely defined
closable operator. Then 𝑇 ∗ = (𝑇)∗.

Proof. Let 𝑦 ∈ D ((𝑇)∗). Then 𝑥 ↦ ⟨𝑇𝑥, 𝑦⟩ is continuous on D(𝑇) and in particular on
D(𝑇 ) ⊆ D(𝑇). So 𝑦 ∈ D(𝑇 ∗) and since D(𝑇 ) is dense in 𝑋, 𝑇 ∗𝑦 = (𝑇)∗ 𝑦.

Let 𝑦 ∈ D(𝑇 ∗) and let 𝑥 ∈ D(𝑇). Then there is a sequence (𝑥𝑛)𝑛∈ℕ in D(𝑇 ) with
𝑥𝑛 → 𝑥 and 𝑇 𝑥𝑛 → 𝑇 𝑥. Hence

∣⟨𝑇𝑥, 𝑦⟩∣ = ∣ lim
𝑛→∞

⟨𝑇 𝑥𝑛, 𝑦⟩∣ = ∣ lim
𝑛→∞

⟨𝑥𝑛, 𝑇 ∗𝑦⟩∣ ≤ lim
𝑛→∞

‖𝑥𝑛‖𝑋 ‖𝑇 ∗𝑦‖𝑌 = ‖𝑥‖𝑋 ‖𝑇 ∗𝑦‖𝑌 .

So 𝑥 ↦ ⟨𝑇𝑥, 𝑦⟩ is bounded by ‖𝑇 ∗𝑦‖𝑌 and hence 𝑦 ∈ (𝑇)∗ and 𝑇 ∗𝑦 = (𝑇)∗ 𝑦.

Thirdly, the closure can be characterised by applying ∗ twice:

Lemma 2.8 (Characterisation of closability [Theorem 1.8 Los13, p. 3]). Let 𝑋, 𝑌 be
Hilbert spaces and 𝑇∶ 𝑋 ⊇ D(𝑇 ) → 𝑌 be a densely defined operator. Then D(𝑇 ∗) is
dense in 𝑌 if and only if 𝑇 is closable. Furthermore, in this case 𝑇 ∗∗ = 𝑇 is the closure
of 𝑇.

Proof. For the easy direction assume that 𝑇 ∗ has dense domain. Then 𝑇 ∗∗ exists and
for every 𝑥 ∈ D(𝑇 ), 𝑦 ∈ D(𝑇 ∗), we have ⟨𝑥, 𝑇 ∗𝑦⟩ = ⟨𝑇 𝑥, 𝑦⟩, thus 𝑦 ↦ ⟨𝑇 ∗𝑦, 𝑥⟩ = ⟨𝑦, 𝑇 𝑥⟩
is continuous which means that 𝑥 ∈ D(𝑇 ∗∗) and 𝑇 ∗∗𝑥 = 𝑇 𝑥.

So 𝑇 ⊆ 𝑇 ∗∗ and 𝑇 ∗∗ is closed by the Lemma 2.6, hence 𝑇 ∗∗ is a closed extension of 𝑇.
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𝑔𝑟(𝑇 )

(ℎ, 𝑇 ℎ)
(0, 𝑓)

Figure 1: Projection theorem in 𝑋 × 𝑌, see [Theorem 2.2 with Note 2.3 2 Alt12,
pp. 314 sq.]

The other direction is more complicated. Assume that 𝑇 is closable. Since 𝑇 ∗ = (𝑇)∗

by Lemma 2.7 assume without loss of generality that 𝑇 is closed. It is to be shown that
D(𝑇 ∗) is dense in 𝑌. Take any 𝑓 ∈ D(𝑇 ∗)⟂. For this consider the minimization problem

𝑀 = inf
𝑔∈D(𝑇 )

‖𝑓 − 𝑇 𝑔‖2 + ‖𝑔‖2 .

(Note that 𝑀 = 0 if 𝑓 = 0 which is what we want to show.)
The space 𝑋 × 𝑌 with the inner product ⟨(𝑔1, 𝑓1), (𝑔2, 𝑓2)⟩ ≔ ⟨𝑔1, 𝑔2⟩ + ⟨𝑓1, 𝑓2⟩ is an

Hilbert space and gr(𝑇 ) is a closed subspace. By the projection theorem illustrated in
Figure 1 this infimum is attained by an (ℎ, 𝑇 ℎ) ∈ gr(𝑇 ) such that

𝑀 = ‖(0, 𝑓) − (ℎ, 𝑇 ℎ)‖2 = ‖ℎ‖2 + ‖𝑓 − 𝑇 ℎ‖2

and ⟨(𝑣, 𝑇 𝑣), (ℎ, 𝑇 ℎ) − (0, 𝑓)⟩𝑋×𝑌 = 0 for all (𝑣, 𝑇 𝑣) ∈ gr(𝑇 )
which implies ⟨𝑣, ℎ⟩𝑋 = ⟨𝑇 𝑣, 𝑓 − 𝑇 ℎ⟩𝑌 for all 𝑣 ∈ D(𝑇 ).

This is the definition for 𝑇 ∗(𝑓 − 𝑇 ℎ), that is

𝑓 − 𝑇 ℎ ∈ D(𝑇 ∗) and 𝑇 ∗(𝑓 − 𝑇 ℎ) = ℎ. (1)

Since 𝑓 ⟂ D(𝑇 ∗), we can conclude with the Cauchy-Schwarz inequality

⟨𝑓, 𝑓 − 𝑇 ℎ⟩ = 0 ⟹ ‖𝑓‖2 = ⟨𝑓, 𝑓⟩ = ⟨𝑓, 𝑇 ℎ⟩ ≤ ‖𝑓‖ ‖𝑇 ℎ‖ ⟹ ‖𝑓‖ ≤ ‖𝑇 ℎ‖ . (2)

Further

‖ℎ‖2 = ⟨ℎ, ℎ⟩
(1)
= ⟨ℎ, 𝑇 ∗(𝑓 − 𝑇 ℎ)⟩ = ⟨𝑇 ℎ, 𝑓 − 𝑇 ℎ⟩ = ⟨𝑇 ℎ, 𝑓⟩ − ‖𝑇 ℎ‖2 = ‖𝑓‖2 − ‖𝑇 ℎ‖2

⟹ ‖ℎ‖2 + ‖𝑇 ℎ‖2 = ‖𝑓‖2
(2)
≤ ‖𝑇 ℎ‖2

⟹ ‖ℎ‖2 ≤ 0 ⟹ ℎ = 0 ⟹ 𝑇 ℎ = 0
(1)
⟹ 𝑓 − 𝑇 ℎ = 𝑓 ∈ D(𝑇 ∗) ∩ D(𝑇 ∗)⟂ ⟹ 𝑓 = 0.

This shows that D(𝑇 ∗) is dense in 𝑌.
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Now we have 𝑇 ⊆ 𝑇 ∗∗ and want to show 𝑇 ∗∗ ⊆ 𝑇 which means by definition that
gr(𝑇 ∗∗) ⊆ gr(𝑇 ) ⊆ 𝑋 × 𝑌 as mentioned in Definition 2.2.

As before we use the inner product ⟨(𝑢, 𝑣), (𝑥, 𝑦)⟩𝑋×𝑌 ≔ ⟨𝑢, 𝑥⟩𝑋 + ⟨𝑣, 𝑦⟩𝑌 on 𝑋 × 𝑌.
For gr(𝑇 ) ⊇ gr(𝑇 ∗∗) it is enough to show that gr(𝑇 )⟂ ⊆ gr(𝑇 ∗∗)⟂. So let (𝑢, 𝑣) ∈ gr(𝑇 )⟂,
i. e. ⟨𝑥, 𝑢⟩𝑋 + ⟨𝑇 𝑥, 𝑣⟩𝑌 = 0 for all 𝑥 ∈ D(𝑇 ). Then 𝑥 ↦ ⟨𝑇 𝑥, 𝑣⟩ = ⟨𝑥, −𝑢⟩ is continuous,
hence 𝑣 ∈ D(𝑇 ∗) and 𝑇 ∗𝑣 = −𝑢. For (𝑧, 𝑇 ∗∗𝑧) ∈ gr(𝑇 ∗∗) we then have

⟨(𝑧, 𝑇 ∗∗𝑧), (𝑢, 𝑣)⟩𝑋×𝑌 = ⟨𝑧, 𝑢⟩𝑋 + ⟨𝑇 ∗∗𝑧, 𝑣⟩𝑌 = ⟨𝑧, 𝑢⟩𝑋 + ⟨𝑧, 𝑇 ∗𝑣⟩𝑋

= ⟨𝑧, 𝑢 + 𝑇 ∗𝑣⟩𝑋 = ⟨𝑧, 0⟩𝑋 = 0

⟹ (𝑢, 𝑣) ⟂ gr(𝑇 ∗∗)⟂

This is what we wanted to show.

In the following we consider operators from one Hilbert space to itself and therefore
call this Hilbert space 𝐻.

An important class of operators are the symmetric ones:

Definition 2.9 (Symmetric operator, [VII.2.2 Wer11, p. 344]). Let 𝑇∶ 𝐻 ⊃ D(𝑇 ) → 𝐻
be a densely defined operator with ⟨𝑇 𝑥, 𝑦⟩ = ⟨𝑥, 𝑇 𝑦⟩ for all 𝑥, 𝑦 ∈ D(𝑇 ). Then 𝑇 is called
symmetric.

This definition of symmetry appears to be almost the same as self-adjoint but the
domains (for 𝑇 = 𝑇 ∗, D(𝑇 ) = D(𝑇 ∗) is required) are different. That is why those two
terms should not be confused. (Also see [Ch. 9 Hal13, pp. 169 sqq.].)

Lemma 2.10 (Symmetric operators are closable, [Proposition 9.4 Hal13, p. 171]). Let
𝑇∶ 𝐻 ⊃ D(𝑇 ) → 𝐻 be a symmetric operator. Then 𝑇 is closable with 𝑇 ⊆ 𝑇 ∗.

Proof. Let 𝑦 ∈ D(𝑇 ). Then 𝑥 ↦ ⟨𝑇 𝑥, 𝑦⟩ = ⟨𝑥, 𝑇 𝑦⟩ is clearly continuous, since ⟨·, ·⟩ is
continuous and for all 𝑥 ∈ D(𝑇 ), ⟨𝑥, 𝑇 𝑦⟩ = ⟨𝑇 𝑥, 𝑦⟩ = ⟨𝑥, 𝑇 ∗𝑦⟩ holds. Hence 𝑇 ⊆ 𝑇 ∗.
In every metric space we have for two sets 𝐴 ⊆ 𝐵 ⟹ 𝐴 ⊆ 𝐵, so gr(𝑇 ) ⊆ gr(𝑇 ∗) 2.6=
gr(𝑇 ∗) = gr(𝑇 ∗) and with Definition 2.2 this is 𝑇 ⊆ 𝑇 ∗.

2.1. Spectrum of self-adjoint operators
In order to solve differential equations one essential tool is integration, namely the inverse
of differentiation. It is well-known that an anti-derivative is not unique. Speaking in
terms of operators, differentiation does not have an inverse. To circumvent this issue we
will use a slightly modified version of the differential operator, which is invertible (see
Corollary 3.5). Which type of “a little” is possible can be asked in a much more general
case where we arrive at the notion of spectra. It is the generalisation of eigenvalues in
the infinite dimensional setting.

Definition 2.11 (Spectrum). Let 𝑇∶ 𝑋 ⊇ D(𝑇 ) → 𝑋 be a densely defined operator on
a Banach space. Then

𝜎(𝑇 ) = {𝜆 ∈ ℂ | 𝑇 − 𝜆 is not continuously invertible}
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is called the spectrum of 𝑇. Continuously invertible includes that the domain of the
inverse is all of 𝑋.

Remark. In the finite dimensional case a linear operator is invertible if and only if it is
injective. Hence in this case the spectrum is the set of eigenvalues.

Lemma 2.12 (Real spectrum of self-adjoint operators, [VII.2.16 Wer11, pp. 355 sq.]).
The spectrum of a self-adjoint operator 𝑇 on a Hilbert space 𝐻 is contained in the real
axis. For any 𝜆 ∈ ℂ \ ℝ we have the bound

∥(𝑇 − 𝜆)−1∥ ≤ Im(𝜆) (3)

for the operator norm of the inverse of 𝑇 − 𝜆.

Proof. Let 𝑇∶ 𝐻 ⊇ D(𝑇 ) → 𝐻 be a self-adjoint operator operator on a Hilbert space 𝐻.
This implies 𝑇 is densely defined and closed.

Let 𝜆 ∈ ℂ \ ℝ. It is to be shown that 𝑇 − 𝜆 is bounded below (implies existence and
boundedness of the inverse) and has dense range (implies together with boundedness
that D((𝑇 − 𝜆)−1) = 𝐻).

Let 𝑥 ∈ D(𝑇 ) with ‖𝑥‖ = 1. In order to find a lower bound for ‖(𝑇 − 𝜆)𝑥‖ it is
unpractical that 𝑇 and 𝜆 appear on both sides in the inner product ‖(𝑇 − 𝜆)𝑥‖2 =
⟨(𝑇 − 𝜆)𝑥, (𝑇 − 𝜆)𝑥⟩. That is why one starts with the Cauchy Schwarz inequality:

‖(𝑇 − 𝜆)𝑥‖ = ‖(𝑇 − 𝜆)𝑥‖ ‖𝑥‖ ≥ |⟨𝑇 − 𝜆)𝑥, 𝑥⟩| ∗= |⟨𝑇 𝑥, 𝑥⟩ − 𝜆|
∗∗
≥ |Im(𝜆)| > 0.

Here ∗ uses 1 = ‖𝑥‖ = ‖𝑥‖2 = ⟨𝑥, 𝑥⟩ and ∗∗ uses that 𝑇 is self-adjoint by noting

⟨𝑥, 𝑇 𝑥⟩∗ = ⟨𝑇 𝑥, 𝑥⟩ = ⟨𝑥, 𝑇 𝑥⟩ ⟹ ⟨𝑇 𝑥, 𝑥⟩ ∈ ℝ.

This shows a lower bound for ‖(𝑇 − 𝜆)𝑥‖ independent of 𝑥 and hence 𝑇 − 𝜆 is injective
with bounded inverse (𝑇 − 𝜆)−1 ∶ 𝐻 ⊇ (𝑇 − 𝜆)(D(𝑇 )) → 𝐻. (3) follows.

To show that the domain of the inverse is 𝐻 use the trick to consider the orthogonal
complement: Let 𝑧 ∈ 𝐻 with ⟨(𝑇 − 𝜆)𝑥, 𝑧⟩ = 0 for all 𝑥 ∈ D(𝑇 ). Then

0 = ⟨(𝑇 − 𝜆)𝑥, 𝑧⟩ = ⟨𝑇 𝑥, 𝑧⟩ − ⟨𝑥, 𝜆∗𝑧⟩ for all 𝑥 in D(𝑇 )
⟹ ⟨𝑥, 𝜆∗𝑧⟩ = ⟨𝑇 𝑥, 𝑧⟩ for all 𝑥 in D(𝑇 )

⟹ 𝑧 ∈ D(𝑇 ∗) = D(𝑇 ) and (𝑇 ∗ − 𝜆∗)𝑧 = (𝑇 − 𝜆∗)𝑧 = 0

Since 𝑇 −𝜆∗ is injective by the first part of the proof, we have 𝑧 = 0. So (𝑇 −𝜆)(D(𝑇 ))⟂ =
{0} and therefore 𝑇 − 𝜆 has dense range.

Since (𝑇 − 𝜆)−1 is continuous D((𝑇 − 𝜆)−1) = (𝑇 − 𝜆)−1(𝐻) is closed and dense in 𝐻
and therefore equal to 𝐻.
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2.2. Closure of the time derivative
In this section the time derivative 𝜕𝑐 on 𝐶∞

𝑐 (ℝ) and the closure 𝜕 on a larger domain will
be discussed. One main class of functions that is discussed in every section of analysis
are differentiable functions. Here differentiation is introduced as a linear operator, firstly
only on smooth functions with compact support 𝐶∞

𝑐 (ℝ). As we will see in the following,
this operator can be closed and in this way define a notion of weak differentiability.
Definition 2.13 ([Definition 2.1 Kal+14, p. 7]). Let

𝜕𝑐 ∶ 𝐿2(ℝ) ⊃ 𝐶∞
𝑐 (ℝ) → 𝐿2(ℝ)

𝜙 ↦ 𝜙′

and define 𝜕 ≔ −𝜕𝑐
∗.

Then 𝜕𝑐 is skew-symmetric, 𝜕 is well-defined and 𝜕𝑐 ⊆ 𝜕 by Lemma 2.10. We call
𝑓 ∈ D(𝜕) weakly differentiable.
Proof. The skew-symmetry of 𝜕𝑐 is just integration by parts. Let 𝜓 ∈ 𝐶∞

𝑐 (ℝ),

𝜓 ↦ ⟨𝜕𝑐𝜓, 𝜓⟩ = ∫
ℝ

𝜓′(𝑥)𝜓(𝑥)∗ 𝑑𝑥 = [𝜓(𝑥)𝜓(𝑥)∗]+∞
−∞ − ∫

ℝ
𝜓(𝑥)𝜓′(𝑥)∗ 𝑑𝑥

= − ∫
ℝ

𝜓(𝑥)𝜓′(𝑥)∗ 𝑑𝑥 = − ⟨𝜓, 𝜓′⟩

= ⟨𝜓, −𝜕𝑐𝜓⟩ is continuous on 𝐶∞
𝑐 (ℝ).

𝐶∞
𝑐 (ℝ) is dense in 𝐿2(ℝ) by Theorem B.10. From Lemma 2.10 we get that i𝜕𝑐 ⊂ (i𝜕𝑐)∗

but this implies directly 𝜕𝑐 ⊂ (−i)(i∗)𝜕𝑐
∗ = −𝜕𝑐

∗ = 𝜕 and the desired statement.

One would naturally expect that the closure of a symmetric operator is self-adjoint
but this is indeed not the case in general. One example is given by differentiation
on absolutely continuous functions, see [Example (a) after Definition VII.2.6 Wer11,
pp. 347 sq.] for details. In our case of differentiation on test functions as a subspace of
𝐿2(ℝ) it is the case though, but the argument takes several steps. For 𝜕 being skew-self-
adjoint, we have to show 𝜕 = −𝜕∗ = −(−𝜕𝑐

∗)∗ 2.8= 𝜕𝑐. That is, for any 𝑢 ∈ D(𝜕) we have
to find a sequence (𝑢𝑛)𝑛∈ℕ in 𝐶∞

𝑐 (ℝ) such that 𝑢𝑛 → 𝑢 and 𝜕𝑐𝑢𝑛 → 𝜕𝑢 in 𝐿2(ℝ).
In Section B we have seen how to approximate functions in 𝐿2(ℝ) with test functions:

truncate and convolute. Since in the first step of truncation we want to stay in D(𝜕) we
cannot truncate with 𝜒[−𝑛,𝑛]. Instead use

(𝜂𝑛)𝑛∈ℕ in 𝐶∞
𝑐 (ℝ) such that

supp(𝜂𝑛) ⊂ [−𝑛, 𝑛],
𝜂𝑛(𝑥) ≤ 1 for all 𝑥 ∈ ℝ,
𝜂𝑛(𝑥) = 1 for all 𝑥 ∈ [−𝑛 + 1, 𝑛 − 1],

𝜂𝑛|[−𝑛,−𝑛+1] = 𝜂𝑚|[−𝑚,−𝑚+1] (· + 𝑛 − 𝑚) for all 𝑛, 𝑚 > 1,

and 𝜂𝑛|[𝑛,𝑛−1] = 𝜂𝑚|[𝑚,𝑚−1] (· − 𝑛 + 𝑚) for all 𝑛, 𝑚 > 1,

Then supp (𝜂′
𝑛) ⊂ [−𝑛, −𝑛 + 1] ∪ [𝑛 − 1, 𝑛].

(4)
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This is the formalisation of a bump that becomes more and more stretched towards
positive and negative infinity as 𝑛 grows. In particular 𝜂′

𝑛 consists of the same two
bumps that move out towards positive and negative infinity as 𝑛 grows and hence the
𝜂′

𝑛s are uniformly bounded.
Together with the convolution we define with 𝛿𝑚 being a Friedrichs mollifier as in

Definition B.2
𝑢𝑛,𝑚 ≔ 𝛿𝑚 ∗ (𝜂𝑛𝑢). (5)

In order to relate 𝜕𝑢𝑛,𝑚 to 𝜕𝑢 we have to check how 𝜕 interact with convolution and
multiplication. For both we have statements for smooth functions (product rule and
Theorem B.6) which we want to generalise.

Lemma 2.14 (Product rule). Let 𝜑 ∈ 𝐶∞
𝑐 (ℝ) and 𝑣 ∈ D(𝜕). Then 𝜑𝑣 ∈ D(𝜕) and

𝜕(𝜑𝑣) = (𝜕𝜑)𝑣 + 𝜑(𝜕𝑣) = 𝜑′𝑣 + 𝜑(𝜕𝑣).

Proof. Since 𝜕 is defined as an adjoint operator we show the equation by testing it with
any 𝜓 ∈ 𝐶∞

𝑐 (ℝ):

⟨𝜕𝜑𝑣 + 𝜑𝜕𝑣, 𝜓⟩𝐿2(ℝ) = ∫
ℝ

𝜑′𝑣𝜓∗ + 𝜑𝜕𝑣𝜓∗ = ⟨𝑣, 𝜑′∗𝜓⟩𝐿2(ℝ) + ⟨𝜕𝑣, 𝜑∗𝜓⟩𝐿2(ℝ)

= ⟨𝑣, 𝜑′∗𝜓⟩𝐿2(ℝ) − ⟨𝑣, 𝜕(𝜑∗𝜓)⟩𝐿2(ℝ)

= ⟨𝑣, 𝜑′∗𝜓⟩𝐿2(ℝ) − ⟨𝑣, 𝜑′∗𝜓 + 𝜑∗𝜓′⟩𝐿2(ℝ)

= − ⟨𝑣, 𝜑∗𝜓′⟩𝐿2(ℝ) = − ∫
ℝ

𝑣𝜑𝜓′∗ = − ⟨𝜑𝑣, 𝜓′⟩𝐿2(ℝ) .

Since 𝑣, 𝜕𝑣 are in 𝐿2(ℝ) and 𝜑 and 𝜕𝜑 are bounded, 𝜕𝜑𝑣 + 𝜑𝜕𝑣 is in 𝐿2(ℝ) and hence
𝜓 ↦ ⟨𝜑𝑣, 𝜓′⟩𝐿2(ℝ) is continuous on 𝐶∞

𝑐 (ℝ). By definition of 𝜕 = −𝜕𝑐
∗, 𝜑𝑣 ∈ D(𝜕) and

𝜕(𝜑𝑣) = 𝜕𝜑𝑣 + 𝜑𝜕𝑣.

Lemma 2.15 (Differentiation of convolution). Let 𝜑 ∈ 𝐶∞
𝑐 (ℝ) and 𝑢 ∈ D(𝜕). Then

𝜑 ∗ 𝑢 ∈ D(𝜕) and
𝜕(𝜑 ∗ 𝑢) = (𝜕𝜑) ∗ 𝑢 = 𝜑 ∗ (𝜕𝑢).

Proof. (𝜕𝜑) ∗ 𝑢 is in 𝐿2(ℝ) since 𝜕𝜑 ∈ 𝐶∞
𝑐 (ℝ) and 𝑢 ∈ 𝐿2(ℝ) and by B.6 we have

(𝜕𝜑) ∗ 𝑢 = 𝜕(𝜑 ∗ 𝑢). To show the last equality we again test with 𝜓 ∈ 𝐶∞
𝑐 (ℝ). The

use of the theorem of Fubini is justified since the last term is finite and all integrands
are non-negative. Note that we use that (classical) differentiation and argument shift
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commutate

− ⟨𝜑 ∗ 𝑢, 𝜕𝜓⟩𝐿2(ℝ) = − ∫
ℝ

∫
ℝ

𝜑(𝑡)𝑢(𝑥 − 𝑡) 𝑑𝑡 𝜓′(𝑥)∗ 𝑑𝑥

= − ∫
ℝ

𝜑(𝑡) ∫
ℝ

𝑢(𝑥 − 𝑡)𝜓′(𝑥)∗ 𝑑𝑥 𝑑𝑡 (Fubini)

= − ∫
ℝ

𝜑(𝑡) ∫
ℝ

𝑢(𝑦)𝜓′(𝑦 + 𝑡)∗ 𝑑𝑦 𝑑𝑡 (𝑦 = 𝑥 − 𝑡)

= ∫
ℝ

𝜑(𝑡) ∫
ℝ

𝜕𝑢(𝑦)𝜓(𝑦 + 𝑡)∗ 𝑑𝑦 𝑑𝑡 (Definition 𝜕 for 𝑢 and 𝜓(· + 𝑡))

= ∫
ℝ

𝜑(𝑡) ∫
ℝ

𝜕𝑢(𝑥 − 𝑡)𝜓(𝑥)∗ 𝑑𝑦 𝑑𝑡 (𝑥 = 𝑦 + 𝑡)

= ∫
ℝ

∫
ℝ

𝜑(𝑡)𝜕𝑢(𝑥 − 𝑡) 𝑑𝑡 𝜓(𝑥)∗ 𝑑𝑥 (Fubini)

= ∫
ℝ
(𝜑 ∗ 𝜕𝑢)𝜓∗ 𝑑𝑥

= ⟨𝜑 ∗ 𝜕𝑢, 𝜓⟩𝐿2(ℝ)

So, 𝜕(𝜑 ∗ 𝑢) = 𝜑 ∗ (𝜕𝑢).

Theorem 2.16 (𝜕 = 𝜕𝑐, [Theorem 2.2 Kal+14, p. 7]). 𝜕 is skew-self-adjoint, that is
𝜕 = 𝜕𝑐 by the argument on page 13.

Proof. Let 𝑢 ∈ D(𝜕) and 𝑢𝑚,𝑛 as in (5). Then 𝑢𝑚,𝑛 ∈ 𝐶∞
𝑐 (ℝ) for all 𝑚, 𝑛 ∈ ℕ and

𝜕𝑢𝑚,𝑛 = 𝜕(𝛿𝑚 ∗ (𝜂𝑛𝑢)) 2.15= 𝛿𝑚 ∗ 𝜕(𝜂𝑛𝑢) 2.14= 𝛿𝑚 ∗ ((𝜕𝜂𝑛)𝑢 + 𝜂𝑛(𝜕𝑢)) .

Let 𝜀 > 0. Since supp 𝜕𝜂𝑛 ⊂ [−𝑛, −𝑛+1]∪[𝑛−1, 𝑛] and 𝜕𝜂𝑛 are uniformly bounded, and
hence 𝜕𝜂𝑛𝑢 → 0 for 𝑛 → ∞, there is 𝑁1 ∈ ℕ, such that for all 𝑛 > 𝑁1, ‖𝜕𝜂𝑛𝑢‖𝐿2(ℝ) < 𝜀

4 .
By the dominated convergence theorem (dominated by 𝜕𝑢) there is 𝑁2 ∈ ℕ such that

‖𝜂𝑛𝜕𝑢 − 𝜕𝑢‖𝐿2(ℝ) < 𝜀
4 .

By Theorem B.9 there exists for every 𝑛 ∈ ℕ an 𝑚𝑛 ∈ ℕ such that

∥𝛿𝑚𝑛
∗ (𝜕𝜂𝑛𝑢 + 𝜂𝑛𝜕𝑢) − (𝜕𝜂𝑛𝑢 + 𝜂𝑛𝜕𝑢)∥

𝐿2(ℝ)
< 𝜀

2
.

With those estimates and the triangle inequality we get

∥𝛿𝑚𝑛
∗ (𝜕𝜂𝑛𝑢 + 𝜂𝑛𝜕𝑢) − 𝜕𝑢∥

𝐿2(ℝ)
< 𝜀

2
+ 𝜀

4
+ 𝜀

4
= 𝜀

for all 𝑛 > max{𝑁1, 𝑁2}. Hence 𝜕𝑢𝑚𝑛,𝑛 → 𝜕𝑢 and 𝑢𝑚𝑛,𝑛 → 𝑢 for 𝑛 →  ∞ in 𝐿2(ℝ).
That is by definition that 𝑢 ∈ D(𝜕𝑐) and 𝜕𝑐𝑢 = 𝜕𝑢.
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3. Weighted function spaces
As it was mentioned in the introduction (Section 1.3) we want to work with Hilbert
space valued functions, not only ℂ-valued ones. Fortunately it does not hurt to always
think of ℂ-valued functions since the theory does not change thanks to the results of
Section A.

Let 𝐻 be any Hilbert space throughout the remaining thesis.

3.1. Antiderivatives of test functions
In order to write a differential equation as a fixed point problem as we will do in Section
5 we need to study the inverse of the differentiation operator 𝜕.

Since 𝜕 is the usual derivative on test functions 𝜑 ∈ 𝐶∞
𝑐 (ℝ; 𝐻), the inverse 𝜕−1𝜑 must

be an antiderivative, given by ∫𝑥
𝑥0

𝜑(𝑡) 𝑑𝑡 for some 𝑥0 ∈ ℝ. Since constant functions apart
from 0 are not in 𝐿2(ℝ; 𝐻), at most one antiderivative Φ is in 𝐿2(ℝ; 𝐻).

Φ must be constant for sufficiently small and large (ℝ \ supp(𝜑)) arguments, call
these values Φ(−∞) and Φ(∞). They are related via Φ(∞) = Φ(−∞) + ∫

ℝ
𝜑 by the

fundamental theorem of calculus.
Unfortunately this implies that Φ is not in 𝐿2(ℝ; 𝐻) except for the special case ∫

ℝ
𝜑 =

0. Hence we need a different space that contains functions that are constant from some
point onward. Since 𝜕 needs to be defined for those functions as well we can inductively
conclude that one of the following two function spaces must be included in our setting:

Definition 3.1 (Test space, [Definition 3.1 Kal+14, p. 12]). Define

𝐶∞
𝑐+(ℝ; 𝐻) ≔ {𝜙 ∈ 𝐶∞(ℝ; 𝐻) ∣

sup supp 𝜙 < ∞
and there is 𝑛 ∈ ℕ with 𝜙(𝑛) ∈ 𝐶∞

𝑐 (ℝ; 𝐻)
}

and

𝐶∞
𝑐−(ℝ; 𝐻) ≔ {𝜙 ∈ 𝐶∞(ℝ; 𝐻) ∣

inf supp 𝜙 > −∞
and there is 𝑛 ∈ ℕ with 𝜙(𝑛) ∈ 𝐶∞

𝑐 (ℝ; 𝐻)
}

(The +/− in the notation should hint to the fact, that the compact support only applies
to the positive/ negative side of the real line.)

3.2. Weighted 𝐿2-space
In order to apply methods of functional analysis we want to work in a Hilbert space
similar to 𝐿2(ℝ; 𝐻). In order to include 𝐶∞

𝑐±(ℝ) we introduce an exponential weight.

Definition 3.2 (weighted Space, [Kal+14, Def. 2.3]). Let 𝜚 ∈ ℝ. Define

𝐻0
𝜚 (ℝ) ≔ {𝑓 ∈ 𝐿2,loc(ℝ) ∣ (𝑥 ↦ exp(−𝜚𝑥)𝑓(𝑥)) ∈ 𝐿2(ℝ)}

𝐻0
𝜚 (ℝ) ⊗ 𝐻 = {𝑓 ∈ 𝐿2,loc(ℝ) ⊗ 𝐻 ∣ (𝑥 ↦ exp(−𝜚𝑥)𝑓(𝑥)) ∈ 𝐿2(ℝ) ⊗ 𝐻}
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We endow 𝐻0
𝜚 (ℝ) and 𝐻0

𝜚 (ℝ) ⊗ 𝐻 respectively with the inner products

(𝑓, 𝑔) ↦ ⟨𝑓, 𝑔⟩𝜚,0 ≔ ∫
ℝ

𝑓(𝑥)𝑔(𝑥)∗ exp(−2𝜚𝑥) 𝑑𝑥

(𝑓, 𝑔) ↦ ⟨𝑓, 𝑔⟩𝜚,0 = ∫
ℝ

⟨𝑓(𝑥), 𝑔(𝑥)⟩𝐻 exp(−2𝜚𝑥) 𝑑𝑥

and the induced norms, both called ‖·‖𝜚,0. Here 𝐿2,loc(ℝ) is the space of all locally
square-integrable functions

𝐿2,loc(ℝ) = {𝑓∶ ℝ → ℂ ∣ 𝑓 measurable, ∀𝐾 ⊂ ℝ compact ∫
𝐾

‖𝑓(𝑥)‖2 𝑑𝑥 < ∞}

(of course factored out by equality almost everywhere).
Note that 𝐻0

0 (ℝ) = 𝐿2(ℝ), 𝐻0
0 (ℝ) ⊗ 𝐻 = 𝐿2(ℝ) ⊗ 𝐻 and ‖·‖0,0 = ‖·‖𝐿2(ℝ).

Remark (Unitary exp(−𝜚𝑚), [after Definition 2.3 Kal+14, p. 8]). 𝐻0
𝜚 (ℝ)⊗𝐻 is obviously

isometrically isomorphic to 𝐿2(ℝ; 𝐻) with the following unitary operator exp(−𝜚𝑚):

exp(−𝜚𝑚)∶ 𝐻0
𝜚 (ℝ) ⊗ 𝐻 → 𝐿2(ℝ) ⊗ 𝐻∶ 𝑓 ↦ (𝑥 ↦ exp(−𝜚𝑥)𝑓(𝑥)), (6)

with 𝑚 being multiplication with the argument:

(𝑚𝑓)(𝑥) = 𝑥𝑓(𝑥) (𝑥 ∈ ℝ).

Here exp is not to be understood pointwise:

exp(−𝜚𝑚)(𝑓)(𝑥) ≠ exp(−𝜚(𝑚𝑓)(𝑥)) = exp(−𝜚𝑥𝑓(𝑥)).

Instead remember the definition of exp on ℝ: exp(𝑥) = ∑∞
𝑘=0

𝑥𝑘

𝑘! . Here exp is applied
to the linear operator −𝜚𝑚 and the multiplication used to define the powers of the
argument is concatenation. For 𝑓 ∈ 𝐻0

𝜚 (ℝ), 𝑥 ∈ ℝ

exp(−𝜚𝑚) =
∞

∑
𝑘=0

(−𝜚𝑚)𝑘

𝑘!

⟹ exp(−𝜚𝑚)(𝑓) =
∞

∑
𝑘=0

1
𝑘!

(−𝜚𝑚)𝑘(𝑓)

⟹ exp(−𝜚𝑚)(𝑓)(𝑥) =
∞

∑
𝑘=0

1
𝑘!

(−𝜚𝑚)𝑘(𝑓)(𝑥) =
∞

∑
𝑘=0

1
𝑘!

(−𝜚)𝑘𝑥𝑘𝑓(𝑥)

= (
∞

∑
𝑘=0

1
𝑘!

(−𝜚)𝑘𝑥𝑘) 𝑓(𝑥) = exp(−𝜚𝑥)𝑓(𝑥).

This is also the canonical generalisation of exp used on matrices where concatenation
and (matrix) multiplication coincide.
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On 𝐿2(ℝ) (and 𝐿2(ℝ) ⊗ 𝐻) we developed the differentiation as a linear operator with
the greatest possible domain in Section 2.2. In order to expand this operator to the
weighted spaces we can use the unitary operators exp(−𝜚𝑚) to go from 𝐻0

𝜚 (ℝ) ⊗ 𝐻 to
𝐿2(ℝ) ⊗ 𝐻, differentiate there and go back:

Definition 3.3 (Naive differentiation on weigted space, [Corollary 2.5 Kal+14, p. 8]).
For 𝜚 ∈ ℝ define the (unbounded) linear operator ̃𝜕𝜚 on

D( ̃𝜕𝜚) = exp(−𝜚𝑚)−1(D(𝜕)) ⊂ 𝐻0
𝜚 (ℝ) ⊗ 𝐻

̃𝜕𝜚 ∶ 𝐻0
𝜚 (ℝ) ⊗ 𝐻 ⊃ D( ̃𝜕𝜚) → 𝐻0

𝜚 (ℝ) ⊗ 𝐻
̃𝜕𝜚 ≔ exp(−𝜚𝑚)−1𝜕 exp(−𝜚𝑚).

(7)

After defining ̃𝜕𝜚 one can ask if that is what we would expect of the derivative in the
cases that we can calculate directly: 𝐶∞

𝑐 (ℝ). Let 𝜑 ∈ 𝐶∞
𝑐 (ℝ) ⊆ 𝐻0

𝜚 (ℝ). Then

( ̃𝜕𝜚𝜑)(𝑥) = exp(−𝜚𝑚)−1𝜕(𝑥 ↦ exp(−𝜚𝑥)𝜑(𝑥))
= exp(−𝜚𝑚)−1(𝑥 ↦ −𝜚 exp(−𝜚𝑥)𝜑(𝑥) + exp(−𝜚𝑥)𝜑′(𝑥))
= exp(−𝜚𝑚)−1 exp(−𝜚𝑚)(𝑥 ↦ −𝜚𝜑(𝑥) + 𝜑′(𝑥))
= −𝜚𝜑 + 𝜑′

(8)

This is not exactly what we desired since generalised differentiation should be the clas-
sical derivative on smooth functions. That is why we introduce a correction term.

Definition 3.4 (Differentiation on weigted space, [Corollary 2.5 Kal+14, p. 8]). For
𝜚 ∈ ℝ define

𝜕𝜚 ≔ ̃𝜕𝜚 + 𝜚. (9)

The calculation in (8) also verifies that 𝜕𝜚 does not depend on 𝜚 except for the domain.
(Also see [after Corollary 2.5 Kal+14, p. 9].)

So far all we achieved is an expansion of our space of functions but the actual gain
is that differentiation becomes an invertible operator on 𝐻0

𝜚 (ℝ) ⊗ 𝐻 for 𝜚 ≠ 0. Here we
use Lemma 2.12: 𝜚 ∈ ℝ and therefore 𝜚 is not in the spectrum of ̃𝜕𝜚.

Corollary 3.5 (𝜕𝜚 continuously invertible). For 𝜚 ∈ ℝ\{0} the previously in 3.4 defined
operator 𝜕𝜚 has a continuous inverse with

∥𝜕−1
𝜚 ∥

𝐿(𝐻0
𝜚(ℝ)⊗𝐻,𝐻0

𝜚(ℝ)⊗𝐻)
= 1

|𝜚|
.

Proof. By Lemma 2.16 i𝜕 is self-adjoint and hence by Lemma 2.12 the spectrum of i𝜕 is
contained in the real axis. This means by definition, that i𝜕−i𝜚 is continuously invertible
for all 𝜚 ∈ ℝ \ {0} and Lemma 2.12 gives the estimate

∥(𝜕 − 𝜚)−1∥
𝐿(𝐿2(ℝ),𝐿2(ℝ))

= ∥i(𝜕 − 𝜚)−1∥
𝐿(𝐿2(ℝ),𝐿2(ℝ))

≥ 1
|𝜚|

.
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In order to show ∥i(𝜕 − 𝜚)−1∥
𝐿(𝐿2(ℝ),𝐿2(ℝ))

≤ 1
|𝜚| we could find an element 𝑓 ∈ 𝐿2(ℝ) with

‖𝑓‖0,0 such that ∥(𝜕 − 𝜚)−1𝑓∥
0,0

= 1
|𝜚| . This exists if we find a 𝑔 ∈ 𝐿2(ℝ)\{0} with 𝜕𝑔 = 0

since with appropriate scaling we can define 𝑓 = (𝜕 − 𝜚)𝑔 and get

1 = ‖𝑓‖0,0 = ‖(𝜕 − 𝜚)𝑔‖0,0 = ‖−𝜚𝑔‖0,0 = |𝜚| ∥(𝜕 − 𝜚)−1𝑓∥
0,0

The typical candidates would be constant functions but those are not in 𝐿2(ℝ), so we
need to find an approximating sequence. Define

𝑔𝑛 ≔
𝛿 ∗ 𝜒[−𝑛,𝑛]

∥𝛿 ∗ 𝜒[−𝑛,𝑛]∥0,0

with 𝛿 = 𝛿1 being a mollifier as defined in Definition B.2. Then 𝑔𝑛 ∈ 𝐶∞
𝑐 (ℝ) and hence

we can calculate

‖𝜕(𝑔𝑛)‖0,0 = ‖𝑔′
𝑛‖0,0

𝐵.6= ∥
𝛿′ ∗ 𝜒[−𝑛,𝑛]

∥𝛿 ∗ 𝜒[−𝑛,𝑛]∥𝐿2(ℝ)

∥

0,0

= ∥𝛿′ ∗ 𝜒[−𝑛,𝑛]∥0,0⏟⏟⏟⏟⏟⏟⏟
constant,𝑛→∞

∥𝛿 ∗ 𝜒[−𝑛,𝑛]∥
−1

0,0⏟⏟⏟⏟⏟⏟⏟
→0, 𝑛→∞

→ 0

𝛿′ is a function with support in [−1, 1] and integral 0. Hence 𝛿′ ∗ 𝜒[−𝑛,𝑛] consists of two
bumps on [−𝑛 − 1, −𝑛 + 1] and [𝑛 − 1, 𝑛 + 1] that move to ±∞ for 𝑛 → ∞ but look the
same for all 𝑛. Hence ∥𝛿′ ∗ 𝜒[−𝑛,𝑛]∥0,0

is constant over all 𝑛 ∈ ℕ.
This tells us

‖(𝜕 − 𝜚)𝑔𝑛‖𝐿2(ℝ) ≤ ‖𝜕𝑔𝑛‖0,0 + |𝜚| ‖𝑔𝑛‖0,0 → |𝜚| ‖𝑔𝑛‖0,0 ,

hence ∥(𝜕 − 𝜚)−1∥
𝐿(𝐿2(ℝ),𝐿2(ℝ))

≤ 1
|𝜚|

.

Since exp(−𝜚𝑚) is unitary, ∥𝜕−1
𝜚 ∥

𝐿(𝜚,0,𝜚,0)
= ∥(𝜕 + 𝜚)−1∥

𝐿(𝐿2(ℝ),𝐿2(ℝ))
= 1

|𝜚| .
𝜕−1

𝜚 on 𝐻0
𝜚 (ℝ) ⊗ 𝐻 has the same norm as discussed in example A.8.

Now that we have properly introduced the inverse of differentiation we can summarize
the conclusions of Section 3.1:

Corollary 3.6 (Explicit formula for antiderivatives, [Corollary 2.5 (d) Kal+14, p. 8]).
Let 𝜚 ∈ ℝ>0, 𝑓 ∈ 𝐻0

𝜚 (ℝ) ⊗ 𝐻. Then

(𝜕−1
𝜚 𝑓) (𝑥) = ∫

𝑥

−∞
𝑓(𝑡) 𝑑𝑡 . (10)

Let 𝑓 ∈ 𝐻0
−𝜚(ℝ) ⊗ 𝐻. Then

(𝜕−1
−𝜚𝑓) (𝑥) = ∫

𝑥

∞
𝑓(𝑡) 𝑑𝑡 = − ∫

∞

𝑥
𝑓(𝑡) 𝑑𝑡 (11)
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Proof. As we have seen in Section 3.1 the result holds for 𝑓 ∈ 𝐶∞
𝑐 (ℝ; 𝐻). By continuity

we want to extend this result to all of 𝐻0
𝜚 (ℝ)⊗𝐻. Let (𝜑𝑛)𝑛∈ℕ be a sequence in 𝐶∞

𝑐 (ℝ; 𝐻)
converging to 𝑓 in 𝐻0

𝜚 (ℝ) ⊗ 𝐻. By continuity proven in Corollary 3.5 𝜕−1
𝜚 𝜑𝑛 converges

to 𝜕−1
𝜚 𝑓. Now consider Φ𝑛 = 𝜕−1

𝜚 𝜑𝑛 = ∫𝑥
−∞

𝜑(𝑡) 𝑑𝑡 for 𝑛 ∈ ℕ and 𝐹 = ∫𝑥
−∞

𝑓(𝑡) 𝑑𝑡 and
estimate

‖Φ𝑛 − 𝐹‖𝜚,0 = ∫
ℝ

∣∫
𝑥

−∞
𝜑𝑛(𝑡) 𝑑𝑡 − ∫

𝑥

−∞
𝑓(𝑡) 𝑑𝑡 ∣

2

exp(−2𝜚𝑥) 𝑑𝑥

= ∫
ℝ

∣∫
𝑥

−∞
𝜑𝑛(𝑡) − 𝑓(𝑡) 𝑑𝑡 ∣

2

exp(−2𝜚𝑥) 𝑑𝑥

≤ ∫
ℝ

∫
𝑥

−∞
|𝜑𝑛(𝑡) − 𝑓(𝑡)|2 𝑑𝑡 exp(−2𝜚𝑥) 𝑑𝑥 (Jensen-inequality)

= ∫
ℝ

∫
ℝ

𝜒[−∞,𝑥](𝑡) |𝜑𝑛(𝑡) − 𝑓(𝑡)|2 exp(−2𝜚𝑥) 𝑑𝑡 𝑑𝑥

= ∫
ℝ

∫
ℝ

𝜒[𝑡,∞](𝑥) |𝜑𝑛(𝑡) − 𝑓(𝑡)|2 exp(−2𝜚𝑥) 𝑑𝑡 𝑑𝑥

= ∫
ℝ

∫
∞

𝑡
exp(−2𝜚𝑥) 𝑑𝑥 |𝜑𝑛(𝑡) − 𝑓(𝑡)|2 𝑑𝑡 (Fubini)

= ∫
ℝ

[−1
2𝜚

exp(−2𝜚𝑥)]
∞

𝑡
|𝜑𝑛(𝑡) − 𝑓(𝑡)|2 𝑑𝑡

= ∫
ℝ

1
2𝜚

exp(−2𝜚𝑡) |𝜑𝑛(𝑡) − 𝑓(𝑡)|2 𝑑𝑡

= 1
2𝜚

‖𝜑𝑛 − 𝑓‖𝜚,0 → 0, 𝑛 → ∞.

This shows 𝜕−1
𝜚 𝑓 ← 𝜕−1

𝜚 𝜑𝑛 = Φ𝑛 → 𝐹 in 𝐻0
𝜚 (ℝ) ⊗ 𝐻, so 𝐹 = 𝜕−1

𝜚 𝑓.
The second case for 𝐻0

−𝜚(ℝ) ⊗ 𝐻 is proven analogously.
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4. Gelfand triple
So far we have defined the differentiation on a sub (vector) space D(𝜕𝜚) of 𝐻0

𝜚 (ℝ) ⊗ 𝐻
and as 𝜕𝜚 is unbounded there is no way to extend it continuously onto all of 𝐻0

𝜚 (ℝ) ⊗ 𝐻
mapping to 𝐻0

𝜚 (ℝ) ⊗ 𝐻. In order to apply methods from functional analysis we rather
want to consider an operator on a Hilbert space, not on a non-complete pre-Hilbert
space. So we make D(𝜕𝜚) a Hilbert space in the following way:

Definition 4.1 (𝐻1
𝜚 (ℝ), [Def. 2.6 Kal+14, p. 9]). For 𝜚 ∈ ℝ \ {0} define 𝐻1

𝜚 (ℝ) as
(D(𝜕𝜚), ⟨·, ·⟩𝜚,1) with the inner product ⟨𝑓, 𝑔⟩𝜚,1 = ⟨𝜕𝜚𝑓, 𝜕𝜚𝑔⟩

𝜚,0
for 𝑓, 𝑔 ∈ 𝐻1

𝜚 (ℝ). It
follows for the norm: ‖𝑓‖𝜚,1 = ∥𝜕𝜚𝑓∥

𝜚,0
.

Remark. Note that even though D(𝜕𝜚) is as a vector space a subspace of 𝐻0
𝜚 (ℝ) ⊗ 𝐻,

𝐻1
𝜚 (ℝ) ⊗ 𝐻 is not a sub Hilbert space because ‖·‖𝜚,1 ≠ ‖·‖𝜚,0.

Equipped with 𝐻1
𝜚 (ℝ) ⊗ 𝐻 we could write our equation to hold in 𝐻0

𝜚 (ℝ) ⊗ 𝐻 with
the solution being an element of 𝐻1

𝜚 (ℝ) ⊗ 𝐻 but there are common use cases where the
right hand side of a differential equation cannot be formulated as a function but as a
linear functional on functions. The most prominent example are initial value problems
as described in [Section 5.1 Kal+14, p. 24]. We model this by the following space.

Definition 4.2 (Extrapolation space 𝐻−1
𝜚 (ℝ)). For 𝜚 ∈ ℝ\{0} define 𝐻−1

𝜚 (ℝ) ≔ 𝐻1
−𝜚(ℝ)∗

as the space of all continuous linear functionals on 𝐻1
−𝜚(ℝ) with the usual operator norm,

denoted by ‖·‖𝜚,−1. Pay attention to the sign of 𝜚! 𝐻𝑖𝜚−1 can be called extrapolation
space.

𝐻−1
𝜚 (ℝ) ⊗ 𝐻 ≅ (𝐻1

−𝜚(ℝ) ⊗ 𝐻)∗ as expected.

Remark (Degree of differentiability). The index −1, 0 and 1 indicate the degree of
differentiability. Functions in 𝐻1

𝜚 (ℝ) ⊗ 𝐻 can be differentiated once in the sense of
𝜕𝜚. Functions in 𝐻0

𝜚 (ℝ) ⊗ 𝐻 in general cannot be derived but we will see in Theorem
4.5 that we can make sense of 𝜕𝜚 as an operator from 𝐻0

𝜚 (ℝ) ⊗ 𝐻 to 𝐻−1
𝜚 (ℝ) ⊗ 𝐻,

so “first antiderivatives” of elements of 𝐻−1
𝜚 (ℝ) ⊗ 𝐻 are not differentiable but second

antiderivatives are, justifying the intuition of a differentiability degree of −1.
Since 𝜕−1

𝜚 is continuous as a mapping from 𝐻0
𝜚 (ℝ)⊗𝐻 to 𝐻0

𝜚 (ℝ)⊗𝐻, the identity map
is a continuous embedding of 𝐻1

𝜚 (ℝ) ⊗ 𝐻 into 𝐻0
𝜚 (ℝ) ⊗ 𝐻. We want to have the same

for 𝐻0
𝜚 (ℝ) ⊗ 𝐻 into 𝐻−1

𝜚 (ℝ) ⊗ 𝐻 and get it by a typical identification of functions with
functionals: integration. We want to identify a function 𝑢 with the functional

𝜓 ↦ ∫
ℝ

⟨𝑢, 𝜓⟩𝐻 = ⟨𝑢, 𝜓⟩0,0 .

Since neither elements of 𝐻0
𝜚 (ℝ) ⊗ 𝐻 nor elements of 𝐻1

𝜚 (ℝ) ⊗ 𝐻 are square-integrable
one needs exp(−𝜚𝑚). That would yield for 𝑓 ∈ 𝐻0

𝜚 (ℝ) ⊗ 𝐻, 𝑔 ∈ 𝐻1
𝜚 (ℝ) ⊗ 𝐻:

⟨𝑓, 𝑔⟩0,0⏟
not well-defined

= ∫
ℝ

⟨𝑓, 𝑔⟩𝐻⏟⏟⏟⏟⏟
We want that

≠ ⟨𝑓, 𝑔⟩𝜚,0⏟
defined
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The trick chosen here is to not use 𝑔 ∈ 𝐻1
𝜚 (ℝ) ⊗ 𝐻 but 𝑔 ∈ 𝐻1

−𝜚(ℝ) ⊗ 𝐻. This way the
exp cancel and the inner product in 𝐿2(ℝ) ⊗ 𝐻 is well-defined while calculated in the
naive way. This is the reason, why 𝐻−1

𝜚 (ℝ) ⊗ 𝐻 is defined as (𝐻1
−𝜚(ℝ) ⊗ 𝐻)∗ and not

(𝐻1
𝜚 (ℝ) ⊗ 𝐻)∗.

⟨𝑓, 𝑔⟩0,0⏟
not well-defined

= ∫
ℝ

⟨𝑓, 𝑔⟩𝐻⏟⏟⏟⏟⏟
We want that

= ∫
ℝ

⟨
∈𝐿2(ℝ)⊗𝐻

⏞⏞⏞⏞⏞exp(−𝜚𝑚)𝑓,
∈𝐿2(ℝ)⊗𝐻

⏞⏞⏞⏞⏞exp(𝜚𝑚)𝑔⟩
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

We do have this

≕ ⟨𝑓, 𝑔⟩0,0⏟
Now defined!

Lemma 4.3 (Embedding, [Remark 2.7 Kal+14, p. 9]). A function 𝜙 in 𝐻0
𝜚 (ℝ) ⊗ 𝐻 is

identified with the following linear continuous functional in 𝐻−1
𝜚 (ℝ) ⊗ 𝐻:

𝜓 ↦ ⟨exp(−𝜚𝑚)𝜙, exp(𝜚𝑚)𝜓⟩0,0 ≕ ⟨𝜙, 𝜓⟩0,0 (12)

This embedding is conjugate-linear and continuous with

‖𝜓‖𝜚,1 ≤ 1
𝜚

‖𝜓‖𝜚,0 . (13)

In the same way we identify 𝐻0
𝜚 (ℝ) ⊗ 𝐻 with (𝐻0

−𝜚(ℝ) ⊗ 𝐻)∗. By the Fréchet-Riesz
representation theorem (see [Theorem V.3.6 Wer11, p. 228]) and since exp(±𝜚𝑚) is
isometric this identification is isometric.

Proof. Call the embedding 𝜄. It is to be checked that for 𝑓 ∈ 𝐻0
𝜚 (ℝ) ⊗ 𝐻 the functional

𝜄(𝑓) is indeed linear, continuous and the 𝜄 is conjugate-linear and continuous. Let 𝜙 ∈
𝐻0

𝜚 (ℝ) ⊗ 𝐻, 𝜓 ∈ 𝐻1
−𝜚(ℝ) ⊗ 𝐻. The linearity of 𝜄(𝜙) and the conjugate-linearity of 𝜄 are

clear since exp(±𝜚𝑚) is linear and ⟨·, ·⟩ is conjugate bilinear. Then we have to find a
𝐶 ∈ ℝ independent of 𝜓 ( ⟹ the functional is continuous) and 𝜙 ( ⟹ the embedding
is continuous) such that

∣⟨exp(−𝜚𝑚)𝜙, exp(𝜚𝑚)𝜓⟩0,0∣ ≤ 𝐶 ‖𝜓‖−𝜚,1 ‖𝜙‖𝜚,0

The typical tool for estimation of inner products is the Cauchy-Schwarz inequality. The
other ingredient is the fact that the identity embedding from 𝐻1

−𝜚(ℝ)⊗𝐻 into 𝐻0
−𝜚(ℝ)⊗𝐻

is continuous because 𝜕−1
−𝜚 is continuous:

∣⟨exp(−𝜚𝑚)𝜙, exp(𝜚𝑚)𝜓⟩0,0∣ ≤ ‖exp(−𝜚𝑚)𝜙‖0,0 ‖exp(𝜚𝑚)𝜓‖0,0

= ‖𝜙‖𝜚,0 ‖𝜓‖−𝜚,0

= ‖𝜙‖𝜚,0 ∥𝜕−1
−𝜚𝜕−𝜚𝜓∥

−𝜚,0

(well-defined since 𝜓 ∈ D(𝜕−𝜚))
≤ ‖𝜙‖𝜚,0 ∥𝜕−1

−𝜚∥
𝐿(𝐻0

−𝜚(ℝ),𝐻0
−𝜚(ℝ))

∥𝜕−𝜚𝜓∥
−𝜚,0

Def. 4.1= ‖𝜙‖𝜚,0 ∥𝜕−1
−𝜚∥

𝐿(𝐻0
−𝜚(ℝ),𝐻0

−𝜚(ℝ))
‖𝜓‖−𝜚,1
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3.5= ‖𝜙‖𝜚,0
1

|−𝜚|
‖𝜓‖−𝜚,1

⟹ ‖𝜙‖𝜚,−1 ≤ 1
|𝜚|

‖𝜙‖𝜚,0

With 𝐶 = 1
|𝜚| = 1

|−𝜚| we are done.

At this point it also becomes evident why we have to choose 𝜚 ≠ 0. Otherwise the
identity is not a continuous embedding from 𝐻1

−𝜚(ℝ) into 𝐻0
−𝜚(ℝ) and this construction

does not work.
Remark (Gelfand triple, [Theorem 2.8 Kal+14, p. 9]). The triple

(𝐻1
−𝜚(ℝ) ⊗ 𝐻, 𝐻0

0 (ℝ) ⊗ 𝐻, 𝐻−1
𝜚 (ℝ) ⊗ 𝐻)

with 𝐻0
0 (ℝ) ⊗ 𝐻 = 𝐿2(ℝ) ⊗ 𝐻 identified with 𝐻0

−𝜚(ℝ) ⊗ 𝐻 and 𝐻0
𝜚 (ℝ) ⊗ 𝐻 via exp(±𝜚𝑚)

is called a Gelfand triple.

Definition 4.4 (Rigged Hilbert space). In general a Gelfand triple or rigged Hilbert space
is a triple (𝐾0, 𝐾1, 𝐾∗

0) with 𝐾1 being a Hilbert space, 𝐾0 ↪ 𝐾1 a densely embedded
vector space with a finer topology such that the inclusion map 𝜄 ∶ 𝐾0 → 𝐾1 is continuous.
Then 𝜄∗ maps from 𝐾∗

0 to 𝐾∗
1 ≅ 𝐾1, is continuous as well with 𝜄∗𝜑(𝜓) = ⟨𝜑, 𝜓⟩𝐾1

for
𝜑 ∈ 𝐾0, 𝜓 ∈ 𝐾1 and embeds 𝐾1 densely into 𝐾∗

0.

Proof. For simplicity assume that 𝐾0 is a Hilbert space as well. In the case we are
interested in this is the case and the proof for the general case needs no additional idea.

First consider the operator norm of 𝜄∗. Let 𝜑 ∈ 𝐾1, 𝜓 ∈ 𝐾0 with ‖𝜓‖𝐾0
= 1. Then

|(𝜄∗𝜑)(𝜓)| = ∣⟨𝜑, 𝜄𝜓⟩𝐾1
∣ ≤ ‖𝜑‖𝐾1

‖𝜄‖𝐿(𝐾0,𝐾1) ‖𝜓‖𝐾0

⟹ ‖𝜄∗𝜑‖𝐾∗
0

≤ ‖𝜑‖𝐾1
‖𝜄‖𝐿(𝐾0,𝐾1)

⟹ ‖𝜄∗‖𝐿(𝐾1,𝐾∗
0) ≤ ‖𝜄‖𝐿(𝐾0,𝐾1) .

So 𝜄∗ is continuous. 𝜄∗ is injective since 𝜄(𝐾0) is dense in 𝐾1 and ⟨𝜑1, 𝜓⟩𝐾1
= ⟨𝜑2, 𝜓⟩𝐾1

for 𝜑1, 𝜑2 ∈ 𝐾1 and all 𝜓 in a dense subset of 𝐾1 implies 𝜑1 = 𝜑2.
We want to show that 𝜄∗ has dense range, that is (𝜄∗)−1 has dense domain. First show

that taking the adjoint and the inverse commute. Note that (𝜄−1)∗ is well-defined since
𝜄−1 is densely defined. Then we have the equivalences

Φ ∈ D ((𝜄∗)−1) ⟺ ∃𝜑 ∈ 𝐾1∀𝜓 ∈ 𝐾0 ∶ Φ(𝜓) = ⟨𝜑, 𝜄𝜓⟩𝐾1

⟺ ∃𝜑 ∈ 𝐾1∀𝜍 ∈ 𝜄(𝐾0) ∶ Φ (𝜄−1𝜍) = ⟨𝜑, 𝜍⟩𝐾1

⟺ (𝜍 ↦ Φ (𝜄−1𝜍)) is continuous on 𝜄 (𝐾0) ⟺ Φ ∈ D ((𝜄−1)∗) .

Here we see that D ((𝜄−1)∗) = D ((𝜄∗)−1) and in both cases the image of Φ is 𝜑.
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By Lemma 2.8 (𝜄−1)∗ is densely defined if and only if 𝜄−1 is closable. But gr (𝜄−1) is the
same as gr(𝜄) except that the entries got swapped. Since 𝜄 is continuous gr(𝜄) ⊂ 𝐾0 ×𝐾1
is closed and therefore 𝜄−1 is closed as well. Hence (𝜄−1)∗ = (𝜄∗)−1 is densely defined.
That means that 𝜄∗ has dense range.

Gelfand triples are in general studied to consider generalised eigenvalues of operators,
most prominently differentiation as in our case. An introduction to the motivation and
use of Rigged Hilbert spaces in physics can be found in [Mad01].

4.1. Dualities
We have seen in Lemma 2.16 that 𝜕 is skew-self-adjoint which means that we can easily
move differentiation from one side to the other in inner products.

Since that is sometimes useful in calculations we check how this duality transfers to
𝜕𝜚. (Also see [Remark 2.9 (a), (b) Kal+14, p. 10].)

For 𝜙 ∈ 𝐻1
𝜚 (ℝ) ⊗ 𝐻, 𝜓 ∈ 𝐻1

−𝜚(ℝ) ⊗ 𝐻 we have

⟨𝜕𝜚𝜙, 𝜓⟩
0,0

4.3= ⟨exp(−𝜚𝑚) exp(−𝜚𝑚)−1(𝜕 + 𝜚) exp(−𝜚𝑚)𝜙, exp(𝜚𝑚)𝜓⟩
0,0

Def. 3.4= ⟨exp(−𝜚𝑚)𝜙, (−𝜕 + 𝜚) exp(𝜚𝑚)𝜓⟩0,0

= ⟨exp(−𝜚𝑚)𝜙, − exp(𝜚𝑚) exp(𝜚𝑚)−1(𝜕 − 𝜚) exp(𝜚𝑚)𝜓⟩
0,0

Def. 3.4= ⟨𝜙, −𝜕−𝜚𝜓⟩
0,0

.

(14)

For the inverse 𝜕−1
𝜚 this immediately yields for 𝜚 ≠ 0 and 𝜙 ∈ 𝐻0

𝜚 (ℝ) ⊗ 𝐻 and 𝜓 ∈
𝐻0

−𝜚(ℝ) ⊗ 𝐻 by plugging in 𝜕−1
𝜚 𝜙 ∈ 𝐻1

𝜚 (ℝ) ⊗ 𝐻 and 𝜕−1
−𝜚𝜓 ∈ 𝐻1

−𝜚(ℝ) ⊗ 𝐻 into (14):

⟨𝜕−1
𝜚 𝜙, 𝜓⟩

0,0
= ⟨𝜙, 𝜕−1

−𝜚𝜓⟩
0,0

(15)

Theorem 4.5 (Derivation as an unitary operator, [Theorem 2.8 Kal+14, p. 9]). Let
𝜚 ∈ ℝ \ {0}. Then the following mappings are unitary:

𝜕−𝜚 ≔ 𝜕1→0 ∶ 𝐻1
−𝜚(ℝ) ⊗ 𝐻 → 𝐻0

−𝜚(ℝ) ⊗ 𝐻
𝜙 ↦ 𝜕−𝜚𝜙

𝜕−1
−𝜚 ≔ 𝜕0→1 ∶ 𝐻0

−𝜚(ℝ) ⊗ 𝐻 → 𝐻1
−𝜚(ℝ) ⊗ 𝐻

𝜙 ↦ 𝜕−1
−𝜚𝜙

𝜕𝜚 ≔ 𝜕0→−1 ∶ 𝐻0
𝜚 (ℝ) ⊗ 𝐻 → 𝐻−1

𝜚 (ℝ) ⊗ 𝐻

𝜙 ↦ (𝐻1
−𝜚(ℝ) ⊗ 𝐻 ∋ 𝜓 ↦ ⟨−𝜕−𝜚𝜓, 𝜙⟩

0,0
)

𝜕−1
𝜚 ≔ 𝜕−1→0 ∶ 𝐻−1

𝜚 (ℝ) ⊗ 𝐻 → 𝐻0
𝜚 (ℝ) ⊗ 𝐻

𝜙 ↦ (𝐻0
−𝜚(ℝ) ⊗ 𝐻 ∋ 𝜓 ↦ 𝜙(−𝜕−1

−𝜚𝜓))

where the last definition is to be understood similarly to the identification defined in 4.3.
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Note that the symbols 𝜕±1
𝜚 are used for different operators that only differ in the

range and domain. Hence while reading one always has to take care to distinguish which
domain 𝜕𝜚 is operating on.

Proof. The first two mappings 𝜕1→0 and 𝜕0→1 are unitary by definition of 𝐻1
−𝜚(ℝ) ⊗ 𝐻.

If one wants to define 𝜕𝜚(= 𝜕0→−1) on 𝐻0
𝜚 (ℝ) ⊗ 𝐻 this new definition should coincide

with the old one on D(𝜕𝜚). With (14) this holds for the definition of 𝜕0→−1 for 𝜙 ∈
D(𝜕𝜚) ⊂ 𝐻0

𝜚 (ℝ) ⊗ 𝐻. Fortunately the term ⟨𝜙, 𝜕−𝜚𝜓⟩
0,0

can also be defined for any
𝜙 ∈ 𝐻0

𝜚 (ℝ) ⊗ 𝐻, giving motivation to the definition of 𝜕0→−1. To show that it is indeed
isometric and therefore unitary verify for 𝜙 ∈ 𝐻0

𝜚 (ℝ) ⊗ 𝐻 with ‖𝜙‖𝜚,0 = 1:

‖𝜕0→−1𝜙‖𝜚,−1 = sup
𝜓∈𝐻1

−𝜚(ℝ)⊗𝐻
‖𝜓‖−𝜚,1=1

∣⟨𝜙, −𝜕−𝜚𝜓⟩
0,0

∣

= sup
𝜓∈𝐻1

−𝜚(ℝ)⊗𝐻
‖𝜓‖−𝜚,1=1

∣⟨exp(−𝜚𝑚)𝜙, − exp(𝜚𝑚)𝜕−𝜚𝜓⟩
0,0

∣

≤ sup
𝜓∈𝐻1

−𝜚(ℝ)⊗𝐻
‖𝜓‖−𝜚,1=1

‖exp(−𝜚𝑚)𝜙‖0,0 ∥− exp(𝜚𝑚)𝜕−𝜚𝜓∥
0,0

(Cauchy-Schwarz)

= sup
𝜓∈𝐻1

−𝜚(ℝ)⊗𝐻
‖𝜓‖−𝜚,1=1

‖𝜙‖𝜚,0 ‖𝜓‖−𝜚,1 = 1

and ‖𝜕0→−1𝜙‖𝜚,−1 ≥
∣
∣
∣
∣

⟨exp(−𝜚𝑚)𝜙, − exp(𝜚𝑚)𝜕−𝜚 (−𝜕−1
−𝜚 exp(−2𝜚𝑚)𝜙⏟⏟⏟⏟⏟⏟⏟⏟⏟

∈𝐻1
−𝜚(ℝ)⊗𝐻

)⟩

0,0

∣
∣
∣
∣

= ∣⟨exp(−𝜚𝑚)𝜙, exp(−𝜚𝑚)𝜙⟩0,0∣ = ‖𝜙‖2
𝜚,0 = 1

since 1 = ‖𝜙‖𝜚,0 = ∥−𝜕−1
−𝜚 exp(−2𝜚𝑚)𝜙∥

−𝜚,1

In order to verify that 𝜕−1→0 is unitary we show that 𝜕−1→0 = 𝜕−1
0→−1. Let 𝜙 ∈ 𝐻0

𝜚 (ℝ)⊗𝐻.
Then

𝜕−1→0𝜕0→−1𝜙 = 𝜕−1→0 (𝜓 ↦ ⟨−𝜕−𝜚𝜓, 𝜙⟩)

= (𝜓 ↦ ⟨−𝜕−𝜚 (−𝜕−1
−𝜚𝜓) , 𝜙⟩

0,0
)

= (𝜓 ↦ ⟨𝜓, 𝜙⟩0,0) = 𝜙 via the embedding of 4.3

Since −𝜕−1
−𝜚 is isometric 𝜕−1→0𝜙 = 0 implies 𝜙 = 0. Hence 𝜕−1→0 is injective, and

together with 𝜕−1→0𝜕0→−1 = id𝐻0
𝜚(ℝ)⊗𝐻 it is bijective.
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5. Solution Theory
After introducing differentiation as an operator between different function spaces we now
use this setting to tackle (ordinary) differential equations. Usually when a differential
equation arises in any application it is not given which properties a solution must have,
i. e. in which space a solution is to be found. This gives the opportunity to choose a
function space in which a solution is searched for.

An ordinary differential equation can be written in the form

𝑥′(𝑡) = 𝑓(𝑥(𝑡), 𝑡) 𝑡 ∈ ℝ

with 𝑓∶ 𝐻 × ℝ → ℝ. In order to simplify and to consider the whole function 𝑥 as once
and not pointwise, we write

𝜕𝜚𝑥 = 𝐹(𝑥) (here) with 𝐹∶ 𝑥 ↦ (𝑡 ↦ 𝑓(𝑥(𝑡), 𝑡)). (16)

Additionally this generalization allows even more cases as we will see later in the appli-
cations. The main idea is to write this equivalently as

𝑥 = 𝜕−1
𝜚 𝐹(𝑥)

and use the contraction mapping theorem. For this 𝜕−1
𝜚 𝐹 must be a contraction on a

suitable space.
The biggest space that we have seen so far on which we were able to define differenti-

ation is 𝐻0
𝜚 (ℝ) ⊗ 𝐻 with 𝜕𝜚 ∶ 𝐻0

𝜚 (ℝ) ⊗ 𝐻 → 𝐻−1
𝜚 (ℝ) ⊗ 𝐻. Hence we have to view 𝐹 as a

function from 𝐻0
𝜚 (ℝ) ⊗ 𝐻 to 𝐻−1

𝜚 (ℝ) ⊗ 𝐻.
Via the embedding of Lemma 4.3 it is possible to extend 𝐹 if it is defined on smooth

functions and maps to 𝐶∞
𝑐 (ℝ; 𝐻) ⊂ 𝐻0

𝜚 (ℝ) ⊗ 𝐻 but in many applications this is not
suitable. One example is given in [Introduction and Section 5.1 Kal+14, pp. 5, 24].
There an initial value problem is formulated in terms of linear functionals on a test
space.

We we have constructed the test space 𝐶∞
𝑐+(ℝ; 𝐻) in Definition 3.1 such that integration

is always possible and it lies in 𝐻1
−𝜚(ℝ) ⊗ 𝐻. Hence 𝐹 must be given as a mapping from

𝐶∞
𝑐 (ℝ; 𝐻) to 𝐶∞

𝑐+(ℝ; 𝐻)′

5.1. Picard-Lindelőf
In order to consider an element of 𝐶∞

𝑐+(ℝ; 𝐻)′ as an element of 𝐻−1
𝜚 (ℝ)⊗𝐻 it must be con-

tinuous with respect to ‖·‖−𝜚,1. Hence we need the following condition on 𝐹∶ 𝐶∞
𝑐 (ℝ; 𝐻) →

𝐶∞
𝑐+(ℝ; 𝐻)′: For all 𝑢 ∈ 𝐶∞

𝑐 (ℝ; 𝐻), there exists 𝐾 ∈ ℝ, such that for all 𝜓 ∈ 𝐶∞
𝑐+(ℝ; 𝐻)

we have:
|𝐹 (𝑢)(𝜓)| ≤ 𝐾 ‖𝜓‖−𝜚,1 . (17)

As noted above 𝜕−1
𝜚 𝐹 must be a contraction in order to use the contraction mapping

theorem. Since 𝜕−1
𝜚 is unitary from 𝐻−1

𝜚 (ℝ) ⊗ 𝐻 to 𝐻0
𝜚 (ℝ) ⊗ 𝐻, 𝐹 must be a contraction
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(i. e. Lipschitz continuous with Lipschitz constant less than 1) itself. Let the Lipschitz
constant of 𝐹 be called 𝑠. Then we need the following condition for all 𝑢, 𝑤 ∈ 𝐶∞

𝑐 (ℝ; 𝐻):

‖𝐹(𝑢) − 𝐹(𝑤)‖𝜚,−1 ≤ 𝑠 ‖𝑢 − 𝑤‖𝜚,0 .

𝐹 is not mapping to 𝐻−1
𝜚 (ℝ)⊗𝐻 by definition. So we write this without the 𝐻−1

𝜚 (ℝ)⊗𝐻-
norm: (Also see [equation (4), 2nd part Kal+14, p. 13].)

|𝐹 (𝑢)(𝜓) − 𝐹(𝑤)(𝜓)| ≤ 𝑠 ‖𝜓‖−𝜚,1 ‖𝑢 − 𝑤‖𝜚,0 for all 𝜓 ∈ 𝐶∞
𝑐+(ℝ; 𝐻). (18)

Now we can simplify the first condition (17) to

There exists 𝐾 ∈ ℝ such that for all 𝜓 ∈ 𝐶∞
𝑐+(ℝ; 𝐻): |𝐹 (0)(𝜓)| ≤ 𝐾 ‖𝜓‖−𝜚,1 (19)

since (19) together with (18) implies for any 𝜙 ∈ 𝐶∞
𝑐 (ℝ; 𝐻) and any 𝜓 ∈ 𝐶∞

𝑐+(ℝ; 𝐻)

|𝐹(𝜙)(𝜓)| = |(𝐹(𝜙)(𝜓) − 𝐹(0)(𝜓)) + 𝐹(0)(𝜓)|
≤ |𝐹(𝜙)(𝜓) − 𝐹(0)(𝜓)| + |𝐹(0)(𝜓)|
≤ 𝑠 ‖𝜓‖−𝜚,1 ‖𝜙 − 0‖𝜚,0 + 𝐾 ‖𝜓‖−𝜚,1

≤ (𝑠 ‖𝜙‖𝜚,0 + 𝐾) ‖𝜓‖−𝜚,1 ⟹ (17)

Definition 5.1 (𝐹𝜚). With (18) and (19) we can now extend 𝐹 to a Lipschitz continuous
function 𝐹𝜚 from 𝐻0

𝜚 (ℝ) ⊗ 𝐻 to 𝐻−1
𝜚 (ℝ) ⊗ 𝐻 with Lipschitz constant 𝑠 < 1.

With this motivation we can formulate the first result that is well-known from the
classical theory of differential equations:

Theorem 5.2 (Picard-Lindelőf, [Theorem 3.2 Kal+14, p. 13]). Let 𝜚 ∈ ℝ>0, 𝑠 ∈ (0, 1)
and let 𝐹∶ 𝐶∞

𝑐 (ℝ; 𝐻) → 𝐶∞
𝑐+(ℝ; 𝐻)′ such that the estimates (18) and (19) hold for 𝜚.

Then there exists a uniquely determined 𝑢 ∈ 𝐻0
𝜚 (ℝ) ⊗ 𝐻 such that

𝜕𝜚𝑢 = 𝐹𝜚(𝑢) holds in 𝐻−1
𝜚 (ℝ) ⊗ 𝐻.

5.2. Higher regularity
A slightly different approach can be taken starting from (16)

𝜕𝜚𝑢 = 𝐹(𝑢) (20)

by looking for a solution for 𝜕𝜚𝑢 instead of 𝑢 directly. Since 𝜕𝜚 is unitary this is an
equivalent problem.

Call 𝑣 = 𝜕𝜚𝑢. Then (16) becomes

𝑣 = 𝐹(𝜕−1
𝜚 𝑣).

In order to use the Theorem 5.2 of Picard-Lindelőf write this as

𝜕𝜚𝑣 = 𝜕𝜚𝐹(𝜕−1
𝜚 𝑣)
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That means that 𝑣 ∈ 𝐻0
𝜚 (ℝ)⊗𝐻, hence 𝐹∶ 𝐻1

𝜚 (ℝ)⊗𝐻 → 𝐻0
𝜚 (ℝ)⊗𝐻. Since 𝜕𝜚 is unitary,

𝐹 must be a contraction. We stay with the assumption that 𝐹 is given as a function
from 𝐶∞

𝑐 (ℝ; 𝐻) to 𝐶∞
𝑐+(ℝ; 𝐻)′. In order to view functionals on 𝐶∞

𝑐+(ℝ; 𝐻) as elements
of 𝐻0

𝜚 (ℝ) ⊗ 𝐻 we identify 𝐻0
𝜚 (ℝ) ⊗ 𝐻 with (𝐻0

−𝜚(ℝ) ⊗ 𝐻)∗ as in 4.3: 𝜙 ∈ 𝐻0
𝜚 (ℝ) ⊗ 𝐻 is

identified with 𝐻0
−𝜚(ℝ) ⊗ 𝐻 ∋ 𝜓 ↦ ⟨𝜓, 𝜙⟩0,0.

With this understanding we arrive at the conditions

there is 𝐾 ∈ ℝ, such that |𝐹 (0)(𝜓)| ≤ 𝐾 ‖𝜓‖−𝜚,0 for all 𝜓 ∈ 𝐶∞
𝑐+(ℝ; 𝐻) (21)

to ensure that the values of 𝐹 can be continuously extended to 𝐻0
𝜚 (ℝ) ⊗ 𝐻. Secondly

there exists 𝑠 ∈ (0, 1) such that for all 𝑢, 𝑤 ∈ 𝐶∞
𝑐 (ℝ; 𝐻) and all 𝜓 ∈ 𝐶∞

𝑐+(ℝ; 𝐻)

|𝐹(𝑢)(𝜓) − 𝐹(𝑤)(𝜓)| ≤ 𝑠 ‖𝜓‖−𝜚,0 ‖𝑢 − 𝑤‖𝜚,1 (22)

to ensure Lipschitz continuity.

Corollary 5.3 (Picard-Lindelőf with higher regularity, [Corollary 3.3 Kal+14, p. 13]).
Let 𝜚 ∈ ℝ>0, 𝑠 ∈ (0, 1) and let 𝐹∶ 𝐶∞

𝑐 (ℝ; 𝐻) → 𝐶∞
𝑐+(ℝ; 𝐻)′ be such that there is 𝐾 ∈ ℝ>0

such that for all 𝑢, 𝑤 ∈ 𝐶∞
𝑐 (ℝ; 𝐻) and 𝜓 ∈ 𝐶∞

𝑐+(ℝ; 𝐻) we have

|𝐹 (0)(𝜓)| ≤ 𝐾 ‖𝜓‖−𝜚,0 and |𝐹 (𝑢)(𝜓) − 𝐹(𝑤)(𝜓)| ≤ 𝑠 ‖𝜓‖−𝜚,0 ‖𝑢 − 𝑤‖𝜚,1 .

Denote by 𝐹𝜚 ∶ 𝐻1
𝜚 (ℝ) ⊗ 𝐻 → 𝐻0

𝜚 (ℝ) ⊗ 𝐻 the strictly contractive extension of 𝐹. Then
there is a unique 𝑢 ∈ 𝐻1

𝜚 (ℝ) ⊗ 𝐻 satisfying

𝜕𝜚𝑢 = 𝐹𝜚(𝑢) in 𝐻0
𝜚 (ℝ) ⊗ 𝐻.

What have we gained with this corollary? The solution is not only existing and unique
but also once (weakly) differentiable. In order to achieve this we need different conditions
on the equation. 𝐹 must map into 𝐻0

𝜚 (ℝ) ⊗ 𝐻, not only 𝐻−1
𝜚 (ℝ) ⊗ 𝐻 which is a stronger

condition but on the other hand, in Corollary 5.3 𝐹 must be Lipschitz continuous with
respect to the 𝐻1

𝜚 (ℝ)⊗𝐻 norm in contrast to the 𝐻0
𝜚 (ℝ)⊗𝐻 norm in Theorem 5.2. This

is a weaker condition since

‖𝑢‖𝜚,0 = ∥𝜕−1
𝜚 𝜕𝜚𝑢∥

𝜚,0
≤ 1

𝜚
‖𝑢‖𝜚,1 for 𝑢 ∈ 𝐻1

𝜚 (ℝ) ⊗ 𝐻 (23)

whereas an estimate in the other direction is not possible because 𝜕𝜚 is unbounded.
There is no reason to assume that 𝐹 is a contraction in differential equations of interest.
With the equation (23) this problem can be solved though if we choose 𝜚 big enough.
In the following theorem we cover the two cases at once but with slightly different
arguments.

Corollary 5.4. Let 𝑘 ∈ {0, 1}, 𝐶 ∈ ℝ>0, 𝜚 > 𝐶 and let 𝐹∶ 𝐶∞
𝑐 (ℝ; 𝐻) → 𝐶∞

𝑐+(ℝ; 𝐻)′ be
such that there exists 𝐾 ∈ ℝ>0 such that for all 𝑢, 𝑤 ∈ 𝐶∞

𝑐 (ℝ; 𝐻) and 𝜓 ∈ 𝐶∞
𝑐+(ℝ; 𝐻) we

have

|𝐹 (0)(𝜓)| ≤ 𝐾 ‖𝜓‖−𝜚,−𝑘 and |𝐹 (𝑢)(𝜓) − 𝐹(𝑤)(𝜓)| ≤ 𝐶 ‖𝜓‖−𝜚,−𝑘 ‖𝑢 − 𝑤‖𝜚,𝑘 .
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We denote by 𝐹𝜚 ∶ 𝐻𝑘
𝜚 (ℝ)⊗𝐻 → 𝐻𝑘

𝜚 (ℝ)⊗𝐻 the unique continuous extension of 𝐹. Then
there is a unique 𝑢 ∈ 𝐻𝑘+1

𝜚 (ℝ) ⊗ 𝐻 with

𝜕𝜚𝑢 = 𝐹𝜚(𝑢) in 𝐻𝑘
𝜚 (ℝ) ⊗ 𝐻.

Proof. Case 𝑘 = 0. By (23) the continuity requirement for 𝐹 implies for 𝑢, 𝑤 ∈
𝐶∞

𝑐 (ℝ; 𝐻), 𝜓 ∈ 𝐶∞
𝑐+(ℝ; 𝐻)

|𝐹(0)(𝜓)| ≤ 𝐾1
𝜚

‖𝜓‖−𝜚,1 and |𝐹 (𝑢)(𝜓) − 𝐹(𝑤)(𝜓)| ≤ 𝐶1
𝜚⏟

≕𝑠<1

‖𝜓‖−𝜚,1 ‖𝑢 − 𝑤‖𝜚,0 .

By Theorem 5.2 𝐹 has a contractive extension ̂𝐹𝜚 ∶ 𝐻0
𝜚 (ℝ) ⊗ 𝐻 → 𝐻−1

𝜚 (ℝ) ⊗ 𝐻 and a
unique solution 𝑢 ∈ 𝐻0

𝜚 (ℝ) ⊗ 𝐻 such that

𝜕𝜚𝑢 = ̂𝐹𝜚(𝑢) in 𝐻−1
𝜚 (ℝ) ⊗ 𝐻.

Since 𝐹𝜚 is the unique continuous extension of 𝐹 on 𝐻0
𝜚 (ℝ) ⊗ 𝐻 this equation holds in

𝐻0
𝜚 (ℝ) ⊗ 𝐻 which implies that 𝑢 ∈ D(𝜕𝜚) = 𝐻1

𝜚 (ℝ) ⊗ 𝐻.
Case 𝑘 = 1. In order to consider an element of 𝐶∞

𝑐+(ℝ; 𝐻)′ as an element of 𝐻1
𝜚 (ℝ)⊗𝐻,

consider the canonical identification of a Hilbert space with its bidual:

𝐻1
𝜚 (ℝ) ⊗ 𝐻 ≅ (𝐻1

𝜚 (ℝ) ⊗ 𝐻∗)∗ = (𝐻−1
−𝜚 (ℝ) ⊗ 𝐻)∗

with the embedding 𝐶∞
𝑐+(ℝ; 𝐻)′ ⊂ 𝐻0

−𝜚(ℝ) ⊗ 𝐻 ⊂ 𝐻−1
−𝜚 (ℝ) ⊗ 𝐻.

The assumption guarantees that 𝐹(𝑢) can be extended to an element of 𝐻1
𝜚 (ℝ) ⊗ 𝐻 for

all 𝑢 ∈ 𝐶∞
𝑐 (ℝ; 𝐻). By (13) in Lemma 4.3 the continuity requirement for 𝐹 implies for

𝑢, 𝑤 ∈ 𝐶∞
𝑐 (ℝ; 𝐻), 𝜓 ∈ 𝐶∞

𝑐+(ℝ; 𝐻)

|𝐹(0)(𝜓)| ≤ 𝐾1
𝜚

‖𝜓‖−𝜚,0 and |𝐹 (𝑢)(𝜓) − 𝐹(𝑤)(𝜓)| ≤ 𝐶1
𝜚⏟

≕𝑠<1

‖𝜓‖−𝜚,0 ‖𝑢 − 𝑤‖𝜚,0 .

By Theorem 5.3 𝐹 has a contractive extension ̂𝐹𝜚 ∶ 𝐻1
𝜚 (ℝ) ⊗ 𝐻 → 𝐻0

𝜚 (ℝ) ⊗ 𝐻 and a
unique solution 𝑢 ∈ 𝐻1

𝜚 (ℝ) ⊗ 𝐻 such that

𝜕𝜚𝑢 = ̂𝐹𝜚(𝑢) in 𝐻0
𝜚 (ℝ) ⊗ 𝐻.

Since 𝐹𝜚 is the unique continuous extension of 𝐹 on 𝐻1
𝜚 (ℝ) ⊗ 𝐻 this equation holds in

𝐻1
𝜚 (ℝ)⊗𝐻 which implies that 𝜕𝜚𝑢 ∈ 𝐻1

𝜚 (ℝ)⊗𝐻, hence 𝑢 ∈ D (𝜕2
𝜚) which could be called

𝐻2
𝜚 (ℝ) ⊗ 𝐻: 𝑢 is twice weakly differentiable.
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6. Causality
In the previous sections we have seen conditions for ordinary differential equations to
be uniquely solvable. Natural systems in physics have another property that should be
modeled within this framework: causality. A solution of an equation up to any time
should only depend on the previous behavior but not on the behavior in the future.

We will see that the conditions on the equation must again be tightened: where we
needed an Lipschitz estimate for some weight 𝜚 we now will need that this estimate holds
for eventually all weights, that is there is some 𝜚0 such that for all 𝜚 > 𝜚0 the estimate
holds.

In the end of this section we will consider causality for the solution operator that maps
the function 𝐹 to the solution of the corresponding equation but on the way we will also
show causality for 𝜕−1

𝜚 𝐹, hence the definition regards any operator.

Definition 6.1 (Causality, [Definition 4.1 Kal+14, p. 18]). Let 𝑋, 𝑌 be Hilbert spaces,
𝜚 ∈ ℝ. A mapping

𝑊∶ 𝐻0
𝜚 (ℝ) ⊗ 𝑋 ⊇ D(𝑊) → 𝐻0

𝜚 (ℝ) ⊗ 𝑌

is called causal if for all 𝑎 ∈ ℝ, 𝑥, 𝑦 ∈ D(𝑊)

𝜒ℝ<𝑎
(𝑚)(𝑥 − 𝑦) = 0 ⟹ 𝜒ℝ<𝑎

(𝑚)(𝑊(𝑥) − 𝑊(𝑦)) = 0 ∶

if two arguments do not differ for arguments ≥ 𝑎 then the images do not differ as well.
This is equivalent to (for all 𝑎 ∈ ℝ)

𝜒ℝ<𝑎
(𝑚)𝑊 = 𝜒ℝ<𝑎

(𝑚)𝑊𝜒ℝ<𝑎
(𝑚).

Here 𝜒ℝ<𝑎
(𝑚) is to be understood as in Definition 3.2:

(𝜒ℝ<𝑎
(𝑚)𝑥)(𝑡) = 𝜒ℝ<𝑎

(𝑡)𝑥(𝑡) = {
𝑥(𝑡) 𝑡 < 𝑎
0 𝑡 ≥ 𝑎

.

Equivalence. “ ⟹ ”: For any 𝑥 ∈ D(𝑊) we obviously have 𝜒ℝ<𝑎
(𝑚)(𝑥 − 𝜒ℝ<𝑎

(𝑚)𝑥) = 0
and hence with the linearity of 𝜒ℝ<𝑎

(𝑚)

𝜒ℝ<𝑎
(𝑚)(𝑊(𝑥) − 𝑊(𝜒ℝ<𝑎

(𝑚)𝑥)) = 0 ⟹ 𝜒ℝ<𝑎
(𝑚)𝑊(𝑥) = 𝑊(𝜒ℝ<𝑎

(𝑚)𝑥).

“ ⟸ ”: Let 𝑥, 𝑦 ∈ D(𝑊). 𝜒ℝ<𝑎
(𝑚)(𝑥−𝑦) = 0 implies 𝜒ℝ<𝑎

(𝑚)𝑥 = 𝜒ℝ<𝑎
(𝑚)𝑦 by linearity

of 𝜒ℝ<𝑎
(𝑚). Hence

𝜒ℝ<𝑎
(𝑚)(𝑊(𝑥) − 𝑊(𝑦)) = 𝜒ℝ<𝑎

(𝑚)𝑊(𝜒ℝ<𝑎
(𝑚)𝑥) − 𝜒ℝ<𝑎

(𝑚)𝑊(𝜒ℝ<𝑎
(𝑚)𝑦)

= 𝜒ℝ<𝑎
(𝑚)𝑊(𝜒ℝ<𝑎

(𝑚)𝑥) − 𝜒ℝ<𝑎
(𝑚)𝑊(𝜒ℝ<𝑎

(𝑚)𝑥) = 0.

The first step to prove the causality of the solution operator is to prove the causality of
the contraction 𝜕−1

𝜚 𝐹𝜚. For this proof we need to relate contraction on weighted spaces
for different weights and hence need a 𝜚-independent formulation of 𝜕−1

𝜚 . This is already
commented on at the Definition 3.1 of the test space 𝐶∞

𝑐+(ℝ; 𝐻).
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Definition 6.2 (∫ on 𝐶∞
𝑐+(ℝ; 𝐻), [Definition 4.3 Kal+14, p. 18]). Let 𝑤 ∈ 𝐶∞

𝑐+(ℝ; 𝐻)′.
Then define

∫
·

−∞
𝑤∶ 𝐶∞

𝑐+(ℝ; 𝐻) → ℂ∶ 𝜓 → 𝑤 (∫
∞

·
𝜓) .

As usual we identify 𝑤 with an element of 𝐻−1
𝜚 (ℝ) ⊗ 𝐻 if it continuous with respect to

the 𝐻−1
𝜚 (ℝ) ⊗ 𝐻-norm. Then, as we expected, we have for 𝜓 ∈ 𝐶∞

𝑐+(ℝ; 𝐻) and 𝜚 > 0:

(∫
·

−∞
𝑤) (𝜓) = 𝑤 (∫

∞

·
𝜓)

(11)
= 𝑤(−𝜕−1

−𝜚𝜓) 4.5= 𝜕−1
𝜚 𝑤(𝜓).

Theorem 6.3 (Causality of Lipschitz function, [Theorem 6.3 Kal+14, p. 19]). Let 𝜚0 ∈
ℝ>0, 𝐹∶ 𝐶∞

𝑐 (ℝ; 𝐻) → 𝐶∞
𝑐+(ℝ; 𝐻)′ be such that there exists 𝐿 ∈ ℝ≥0 and for each 𝜚 > 𝜚0

there exist 𝐾 ∈ ℝ>0 such that for all 𝑢, 𝑤 ∈ 𝐶∞
𝑐 (ℝ; 𝐻) and 𝜓 ∈ 𝐶∞

𝑐+(ℝ; 𝐻)

|𝐹(0)(𝜓)| ≤ 𝐾 ‖𝜓‖−𝜚,1 and |𝐹 (𝑢)(𝜓) − 𝐹(𝑤)(𝜓)| ≤ 𝐿 ‖𝜓‖−𝜚,1 ‖𝑢 − 𝑤‖𝜚,0 .

Then for 𝜚 ∈ ℝ>𝜚0
the mapping

𝜕−1
𝜚 𝐹𝜚 ∶ 𝐻0

𝜚 (ℝ) ⊗ 𝐻 → 𝐻0
𝜚 (ℝ) ⊗ 𝐻

is causal. Here 𝐹𝜚 is the continuous extension of 𝐹 to a mapping 𝐻0
𝜚 (ℝ) ⊗ 𝐻 →

𝐻−1
𝜚 (ℝ) ⊗ 𝐻 as before.

Note that the assumption on 𝐹 becomes different to the existence theorems by as-
suming the Lipschitz estimate for eventually all weights but with an arbitrary Lipschitz
constant.

Proof. First we start with smooth functions for which we have formulas to calculate
with. Let 𝜚 ∈ ℝ>𝜚0

, 𝑣 ∈ 𝐶∞
𝑐 (ℝ; 𝐻), 𝑎 ∈ ℝ. We have to show

𝜒ℝ<𝑎
(𝑚)𝜕−1

𝜚 𝐹𝜚𝑣 = 𝜒ℝ<𝑎
(𝑚)𝜕−1

𝜚 𝐹𝜚𝜒ℝ<𝑎
(𝑚)𝑣.

𝜕−1
𝜚 𝐹𝜚 maps to 𝐻0

𝜚 (ℝ) ⊗ 𝐻 but when written out we only have the formulation as a
mapping to 𝐻0

−𝜚(ℝ) ⊗ 𝐻∗ from Theorem 4.5. What does it mean to apply 𝜒ℝ<𝑎
(𝑚) to

an element of 𝐻0
−𝜚(ℝ) ⊗ 𝐻∗? For 𝑤 ∈ 𝐻0

𝜚 (ℝ) ⊗ 𝐻 ≅ 𝐻0
−𝜚(ℝ) ⊗ 𝐻∗, 𝜓 ∈ 𝐻0

−𝜚(ℝ) ⊗ 𝐻 we
have

(𝜒ℝ<𝑎
(𝑚)𝑤)𝜓 = ⟨𝜒ℝ<𝑎

(𝑚)𝑤, 𝜓⟩
0,0

= ∫
ℝ

⟨𝜒ℝ<𝑎
(𝑚)𝑤(𝑥), 𝜓(𝑥)⟩

𝐻
𝑑𝑥

= ∫
ℝ<𝑎

⟨𝑤(𝑥), 𝜓(𝑥)⟩𝐻 𝑑𝑥 = ∫
ℝ

⟨𝑤(𝑥), 𝜒ℝ<𝑎
(𝑚)𝜓(𝑥)⟩

𝐻
𝑑𝑥

= ⟨𝑤, 𝜒ℝ<𝑎
(𝑚)𝜓⟩

0,0
= 𝑤(𝜒ℝ<𝑎

(𝑚)𝜓)

Hence for checking 𝜒ℝ<𝑎
(𝑚)𝑤 = 𝜒ℝ<𝑎

(𝑚)𝑤̃ we only have to test the equality on

𝜓 ∈ 𝐶∞
𝑐 (ℝ; 𝐻) ⊂ 𝐻0

−𝜚(ℝ) ⊗ 𝐻 with sup supp 𝜓 ≤ 𝑎.
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We have to show: 𝜕−1
𝜚 𝐹𝜚(𝑣)(𝜓) = 𝜕−1

𝜚 𝐹𝜚(𝜒ℝ<𝑎
(𝑚)𝑣)(𝜓). (24)

𝜒ℝ<𝑎
(𝑚)𝑣 is not smooth in 𝑎, hence cannot plugged into 𝐹. In order to approximate

𝜒ℝ<𝑎
(𝑚)𝑣 with smooth functions, we replace 𝜒ℝ<𝑎

(𝑚) with 𝜙(𝑚) with 𝜙 ∈ 𝐶∞(ℝ; 𝐻)
and sup supp 𝜙 ≤ 𝑎. Then for any 𝜂 ∈ ℝ≥𝜚0

∣𝜕−1
𝜚 𝐹𝜚(𝑣)(𝜓) − 𝜕−1

𝜚 𝐹𝜚(𝜙(𝑚)𝑣)(𝜓)∣ Def. 6.2= ∣(∫
·

−∞
𝐹(𝑣)) (𝜓) − (∫

·

−∞
𝐹(𝜙(𝑚)𝑣)) (𝜓)∣

= ∣𝜕−1
𝜂 𝐹𝜂(𝑣)(𝜓) − 𝜕−1

𝜂 𝐹𝜂(𝜙(𝑚)𝑣)(𝜓)∣
since the continuity estimate holds for any
𝜂 ≥ 𝜚0 and hence 𝐹𝜂 exists

= ∣𝐹𝜂(𝑣)(−𝜕−1
−𝜂𝜓) − 𝐹𝜂(𝜙(𝑚)𝑣)(−𝜕−1

−𝜂𝜓)∣
(Def. 4.5: 𝜕−1

𝜂 on 𝐻−1
𝜂 (ℝ) ⊗ 𝐻)

≤ 𝐿 ∥−𝜕−1
−𝜂𝜓∥

−𝜂,1
‖𝑣 − 𝜙(𝑚)𝑣‖𝜂,0

since 𝐹𝜂 is Lipschitz continuous
= 𝐿 ‖𝜓‖−𝜂,0 ‖𝑣 − 𝜙(𝑚)𝑣‖𝜂,0

≤ 𝐿 ‖𝜓‖0,0 exp(𝜂𝑎) ‖𝑣 − 𝜙(𝑚)𝑣‖𝜂,0

since

‖𝜓‖2
−𝜂,0 = ∫

ℝ
‖𝜓(𝑡)‖2

𝐻 exp(2𝜂𝑡) 𝑑𝑡 = ∫
𝑎

∞
‖𝜓(𝑡)‖2

𝐻 exp(2𝜂𝑡) 𝑑𝑡

≤ ∫
ℝ

‖𝜓(𝑡)‖2
𝐻 𝑑𝑡 exp(2𝜂𝑎) = ‖𝜓‖2

0,0 exp(𝜂𝑎)2 < ∞ since 𝜓 ∈ 𝐶∞
𝑐 (ℝ; 𝐻).

By continuity we can again replace 𝜙 by 𝜒ℝ<𝑎
. To see that consider any 𝜙 that agrees

with 𝜒ℝ<𝑎
except for some small interval (𝑎 − 𝜀, 𝑎). There 𝑣 is bounded. Consider the

difference

‖(𝜙 − 𝜒ℝ<𝑎)(𝑚)𝑣‖
𝜂,0

≤ ∥𝜙 − 𝜒ℝ<𝑎
∥
𝜂,0

sup
𝑥∈(𝑎−𝜀)

‖𝑣(𝑥)‖𝐻⏟⏟⏟⏟⏟⏟⏟
<∞

.

By choosing 𝜙 sufficiently close to 𝜒ℝ<𝑎
, we can approximate 𝜒ℝ<𝑎

(𝑚)𝑣 arbitrarily close
with 𝜙(𝑚)𝑣.

We get

∣𝜕−1
𝜚 𝐹𝜚(𝑣)(𝜓) − 𝜕−1

𝜚 𝐹𝜚(𝜙(𝑚)𝑣)(𝜓)∣ ≤ 𝐿 ‖𝜓‖0,0 exp(𝜂𝑎) ∥𝑣 − 𝜒ℝ<𝑎
(𝑚)𝑣∥

𝜂,0

= 𝐿 ‖𝜓‖0,0 exp(𝜂𝑎) ∥𝜒ℝ≥𝑎
(𝑚)𝑣∥

𝜂,0

= 𝐿 ‖𝜓‖0,0 (∫
∞

𝑎
‖𝑣(𝑡)‖2

𝐻 exp(−2𝜂𝑡) exp(2𝜂𝑎) 𝑑𝑡 )
1
2
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= 𝐿 ‖𝜓‖0,0
⎛⎜
⎝

∫
∞

0
‖𝑣(𝑠 + 𝑎)‖2

𝐻 exp(−2𝜂𝑠)⏟⏟⏟⏟⏟
→0, 𝜂→∞

𝑑𝑠 ⎞⎟
⎠

1
2

(𝑠 = 𝑡 − 𝑎)
→ 0 for 𝜂 → ∞ by the dominated convergence theorem

As we discussed for (24) in the beginning, this means

𝜒ℝ<𝑎
(𝑚) (𝜕−1

𝜚 𝐹𝜚(𝑣) − 𝜕−1
𝜚 𝐹𝜚(𝜒ℝ<𝑎

(𝑚)𝑣)) = 0.

Since 𝜒ℝ<𝑎
(𝑚) and 𝜕−1

𝜚 𝐹𝜚 are continuous, this also holds for arbitrary 𝑣 ∈ 𝐻0
𝜚 (ℝ)⊗𝐻.

6.1. Solution independent of the weight
All theorems about existence, uniqueness and causality depended on some choice of the
search space characterized by the weight 𝜚. Since the original differential equation is
independent of 𝜚 it is important to ask if the solution depends on 𝜚. First we check that
the contraction 𝜕−1

𝜚 𝐹𝜚 does not depend on 𝜚:

Lemma 6.4. Let 𝐺∶ 𝐶∞
𝑐 (ℝ; 𝐻) → 𝐶∞

𝑐+(ℝ; 𝐻)′ such that 𝐺 has continuous extensions to
functions 𝐺𝑘 ∶ 𝐻0

𝜚𝑘
(ℝ)⊗𝐻 → 𝐻−1

𝜚𝑘
(ℝ)⊗𝐻 for 𝜚2 ≥ 𝜚1. For 𝑣𝑘 ∈ 𝐻0

𝜚𝑘
(ℝ)⊗𝐻 (𝑘 ∈ {1, 2})

and 𝑎 ∈ ℝ we have

𝜒ℝ>𝑎
(𝑚)𝑣1 ∈ 𝐻0

𝜚2
(ℝ) ⊗ 𝐻

𝜒ℝ<𝑎
(𝑚)𝑣2 ∈ 𝐻0

𝜚1
(ℝ) ⊗ 𝐻.

For 𝑤 ∈ 𝐻0
𝜚1

(ℝ) ⊗ 𝐻 ∩ 𝐻0
𝜚2

(ℝ) ⊗ 𝐻

𝐺1𝑤 = 𝐺2𝑤 ∈ 𝐶∞
𝑐+(ℝ; 𝐻)′.

Proof. To show the first statements consider the definitions for any 𝑎 ∈ ℝ:

∥𝜒ℝ>𝑎
(𝑚)𝑣1∥

2

𝜚2,0
= ∫

ℝ
∥𝜒ℝ>𝑎

(𝑚)𝑣1(𝑡)∥
2

𝐻
exp(−2𝜚2𝑡) 𝑑𝑡

= ∫
∞

𝑎
‖𝑣1(𝑡)‖2

𝐻 exp(−2𝜚1𝑡) exp(−2(𝜚2 − 𝜚1⏟
≥0

)𝑡) 𝑑𝑡

≤ ∫
∞

𝑎
‖𝑣1(𝑡)‖2

𝐻 exp(−2𝜚2𝑡) 𝑑𝑡 exp(−2(𝜚2 − 𝜚1)𝑎)

= ‖𝑣1‖2
𝜚1,0 exp(−2𝑎(𝜚2 − 𝜚1))⏟⏟⏟⏟⏟⏟⏟⏟⏟

≔𝐶𝑎,2<∞

(25)

and in the same way

∥𝜒ℝ<𝑎
(𝑚)𝑣2∥

2

𝜚1,0
≤ ‖𝑣2‖2

𝜚2,0 exp(−2𝑎(𝜚1 − 𝜚2))⏟⏟⏟⏟⏟⏟⏟⏟⏟
≔𝐶𝑎,1<∞

. (26)
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Those two estimates together show that the norms of 𝐻0
𝜚1

(ℝ) ⊗ 𝐻 and 𝐻0
𝜚2

(ℝ) ⊗ 𝐻 are
comparable if we restrict ourselves to functions with compact support. Hence it is useful
to define 𝑤𝑎 ≔ 𝜒[−𝑎,𝑎]𝑤 (𝑎 > 0) for 𝑤 ∈ 𝐻0

𝜚1
(ℝ) ⊗ 𝐻 ∩ 𝐻0

𝜚2
(ℝ) ⊗ 𝐻.

Since 𝐺1 and 𝐺2 are defined as the closure of 𝐺 we have to find sequences of test
functions converging to 𝑤 in both norms. As a first step consider any sequence (𝜑𝑎,𝑘)𝑘∈ℕ
in 𝐶∞

𝑐 (ℝ; 𝐻) that converges to 𝜒[−𝑎,𝑎]𝑤 in 𝐻0
𝜚1

(ℝ) ⊗ 𝐻. Because of the comparability
of the norms it also converges to 𝜒[−𝑎,𝑎]𝑤 in 𝐻0

𝜚2
(ℝ) ⊗ 𝐻. (Choose (𝜑𝑎,𝑘)𝑘∈ℕ such that

supp 𝜑𝑎,𝑘 ⊆ [−𝑎 − 1, 𝑎 + 1].)
Since exp(−2𝜚𝑖𝑚) ‖𝑤𝑎‖2

𝐻 ↗ exp(−2𝜚𝑖𝑚) ‖𝑤‖2
𝐻 for 𝑖 ∈ {1, 2} and 𝑎 → ∞ the monotone

convergence theorem implies convergence of 𝑤𝑎 → 𝑤 for 𝑎 → ∞ in both norms. Hence
the diagonal sequence (𝜑𝑘,𝑘)𝑘∈ℕ → 𝑤 in both norms for 𝑘 → ∞.

The assumed boundedness for 𝐺 carry over to 𝐺1 and 𝐺2. We can use it to show that
the equality 𝐺1(𝜑𝑘,𝑘) = 𝐺(𝜑𝑘,𝑘) = 𝐺2(𝜑𝑘,𝑘) implies 𝐺1𝑤 = 𝐺2𝑤: In order to consider
𝐺2(𝑤) and 𝐺1(𝑤) as elements of a common space, consider elements of 𝐻−1

𝜚𝑖
(ℝ) ⊗ 𝐻

(𝑖 ∈ {1, 2}) as elements of 𝐶∞
𝑐+(ℝ; 𝐻)′ by restriction. (Note that the restriction is injective

since 𝐶∞
𝑐+(ℝ; 𝐻) is dense in 𝐻1

𝜚𝑖
(ℝ) ⊗ 𝐻 (𝑖 ∈ {1, 2}).) Let 𝜓 ∈ 𝐶∞

𝑐+(ℝ; 𝐻). Then

|(𝐺2(𝑤) − 𝐺1(𝑤))(𝜓)| ≤ ∣(𝐺2(𝑤) − 𝐺2(𝜑𝑘,𝑘))(𝜓)∣ + ∣(𝐺2(𝜑𝑘,𝑘) − 𝐺1(𝜑𝑘,𝑘))(𝜓)∣
+ ∣(𝐺1(𝜑𝑘,𝑘) − 𝐺1(𝑤))(𝜓)∣

≤ ∥𝐺2(𝑤) − 𝐺2(𝜑𝑘,𝑘)∥
𝜚2,−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

→0, 𝑘→∞

‖𝜓‖−𝜚2,1 + 0

+ ∥𝐺1(𝜑𝑘,𝑘) − 𝐺1(𝑤)∥
𝜚1,−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

→0, 𝑘→∞

‖𝜓‖−𝜚1,1 → 0 as 𝑘 → ∞

because 𝐺1 and 𝐺2 are continuous and 𝜑𝑘,𝑘 → 𝑤 in both norms.

From here it is a small step to show that the solution is independent of the weight.

Theorem 6.5 (Solution independent of the weight, [Theorem 4.6 Kal+14, p. 19]). Let
𝜚0 ∈ ℝ>0, 𝐹∶ 𝐶∞

𝑐 (ℝ; 𝐻) → 𝐶∞
𝑐+(ℝ; 𝐻)′ be such that for each 𝜚 > 𝜚0 there exist 𝐾𝜚 ∈ ℝ>0

and 𝑠𝜚 ∈ (0, 1) such that for all 𝑢, 𝑤 ∈ 𝐶∞
𝑐 (ℝ; 𝐻) and 𝜓 ∈ 𝐶∞

𝑐+(ℝ; 𝐻)

|𝐹(0)(𝜓)| ≤ 𝐾𝜚 ‖𝜓‖−𝜚,1 and |𝐹 (𝑢)(𝜓) − 𝐹(𝑤)(𝜓)| ≤ 𝑠𝜚 ‖𝜓‖−𝜚,1 ‖𝑢 − 𝑤‖𝜚,0 .

For 𝜚2 ≥ 𝜚1 ≥ 𝜚0 let 𝑤𝜚𝑘
∈ 𝐻0

𝜚𝑘
(ℝ) ⊗ 𝐻 (𝑘 ∈ {1, 2}) be the solution to

𝜕𝜚𝑘
𝑢 = 𝐹𝜚𝑘

(𝑢) ∈ 𝐻−1
𝜚𝑘

(ℝ) ⊗ 𝐻 (𝑘 ∈ {1, 2}).

Then the solutions are the same:

𝑤1 = 𝑤2 ∈ 𝐻0
𝜚1

(ℝ) ⊗ 𝐻 ∩ 𝐻0
𝜚2

(ℝ) ⊗ 𝐻

Proof. Let 𝐺𝑘 ≔ 𝜕−1
𝜚𝑘

𝐹𝜚𝑘
(𝑘 ∈ {0, 1, 2}) for simplicity.
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The solution 𝑤1 is unique in 𝐻0
𝜚1

(ℝ) ⊗ 𝐻 for a single 𝜚 because 𝐺1 is a contraction. In
analogy to the proof for the uniqueness of fixed points of the contraction 𝐺1 we would
like to use the (wrong) inequality

‖𝑤1 − 𝑤2‖𝜚1,0 = ‖𝐺1(𝑤1) − 𝐺1(𝑤2)‖𝜚1,0 ≤ 𝑠𝜚1
‖𝑤1 − 𝑤2‖𝜚1,0 with 𝑠𝜚1

< 1.

We cannot use it directly since 𝑤2 is not necessarily in the domain of 𝐺1 and if it was
we do not know if 𝐺1(𝑤2) = 𝑤2. In the previous Lemma 6.4 we have seen though that
𝜒ℝ<𝑎

(𝑚)𝑤2 ∈ 𝐻0
𝜚1

(ℝ) ⊗ 𝐻 for any 𝑎 ∈ ℝ. So we can consider

𝐺1(𝜒ℝ<𝑎
(𝑚)𝑤1) − 𝐺1(𝜒ℝ<𝑎

(𝑚)𝑤2) = 𝐺1(𝜒ℝ<𝑎
(𝑚)𝑤1) − 𝐺2(𝜒ℝ<𝑎

(𝑚)𝑤2) by Lemma 6.4.

In general 𝐺1(𝜒ℝ<𝑎
(𝑚)𝑤1) could be anything but due to causality and Theorem 6.3 we

know
𝜒ℝ<𝑎

(𝑚)𝐺𝑘(𝜒ℝ<𝑎
(𝑚)𝑤𝑘) = 𝜒ℝ<𝑎

(𝑚)𝐺𝑘(𝑤𝑘) (𝑘 = 1, 2).

Hence

𝜒ℝ<𝑎
(𝑚) (𝐺1(𝜒ℝ<𝑎

(𝑚)𝑤1) − 𝐺1(𝜒ℝ<𝑎
(𝑚)𝑤2))

= 𝜒ℝ<𝑎
(𝑚) (𝐺1(𝜒ℝ<𝑎

(𝑚)𝑤1) − 𝐺2(𝜒ℝ<𝑎
(𝑚)𝑤2))

= 𝜒ℝ<𝑎
(𝑚)𝐺1(𝑤1) − 𝜒ℝ<𝑎

(𝑚)𝐺2(𝑤2)
= 𝜒ℝ<𝑎

(𝑚)(𝑤1 − 𝑤2)

since 𝑤1 and 𝑤2 are fixed points of 𝐺1 and 𝐺2 respectively. Now we can use the con-
traction argument from the beginning:

∥𝜒ℝ<𝑎
(𝑚)(𝑤1 − 𝑤2)∥

𝜚1,0
= ∥𝜒ℝ<𝑎

(𝑚) (𝐺1(𝜒ℝ<𝑎
(𝑚)𝑤1) − 𝐺1(𝜒ℝ<𝑎

(𝑚)𝑤2))∥
𝜚1,0

≤ ∥𝐺1(𝜒ℝ<𝑎
(𝑚)𝑤1) − 𝐺1(𝜒ℝ<𝑎

(𝑚)𝑤2)∥
𝜚1,0

≤ 𝑠𝜚1
∥𝜒ℝ<𝑎

(𝑚)(𝑤1 − 𝑤2)∥ with 𝑠𝜚1
< 1.

Only for 𝜒ℝ<𝑎
(𝑚)𝑤1 = 𝜒ℝ<𝑎

(𝑚)𝑤2 this is no contradiction. So 𝑤1 and 𝑤2 agree on
(−∞, 𝑎) for 𝑎 ∈ ℝ but 𝑎 was arbitrary, so 𝑤1 = 𝑤2.

6.2. Causality of the solution operator
The goal of this section is to prove the causality of the solution operator. That is, the
solution up to any time 𝑡 does not change when changing the “data” (i. e. the right hand
side) up to the time 𝑡. But in order to talk about the solution operator one needs to
give the possible right hand sides (“the 𝐹’s”) a name:

Definition 6.6 (Eventually contracting, [Definition 4.7 Kal+14, p. 20]). Let Conev be
the set of all mappings 𝐹∶ 𝐶∞

𝑐 (ℝ; 𝐻) → 𝐶∞
𝑐+(ℝ; 𝐻)′ such that there exists an 𝜚 such that

for all 𝜂 ∈ ℝ≥𝜚 there is 𝐾 ∈ ℝ>0 and 𝑠 ∈ (0, 1) such that for all 𝑢, 𝑤 ∈ 𝐶∞
𝑐 (ℝ; 𝐻) and

𝜓 ∈ 𝐶∞
𝑐+(ℝ; 𝐻) we have

|𝐹 (0)(𝜓)| ≤ 𝐾 ‖𝜓‖−𝜂,1 and |𝐹 (𝑢)(𝜓) − 𝐹(𝑤)(𝜓)| ≤ 𝑠 ‖𝜓‖−𝜂,1 ‖𝑢 − 𝑤‖𝜂,0
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Remark (Eventually). The functions in Conev are called “eventually contracting” because
they are contraction from some weight onward but for any finite interval they might not
be.

For 𝐹 ∈ Conev we have the results of Theorem 5.2 for existence and uniqueness of a
solution and know by Theorem 6.5 that the solution does not depend on the choice of
the weighted space we solve the equation in. This enables us to write the relation of the
right hand side and the solution as an well-defined operator:
Definition 6.7 (Solution operator). Define

𝑆∶ Conev → ⋃
𝜚>0

𝐻0
𝜚 (ℝ) ⊗ 𝐻

𝐹 ↦ 𝑆(𝐹) such that 𝑆(𝐹) = 𝜕−1
𝜚 𝐹(𝑆(𝐹)) for sufficiantly large 𝜚.

As emphasized before another desired property of the solution operator is causality.
So far causality is only defined for operators of the type

𝑊∶ 𝐻0
𝜚 (ℝ) ⊗ 𝑋 ⊇ D(𝑊) → 𝐻0

𝜚 (ℝ) ⊗ 𝑌

(compare Definition 6.1). In order to to say that 𝐹 and 𝐺 in Conev do not differ for
small arguments (i. e. < 𝑎 for some 𝑎 ∈ ℝ) we can apply (i. e. concatenate) 𝜒ℝ<𝑎

(𝑚) with
𝐹 and 𝐺. But since 𝐹 and 𝐺 are mapping into distribution spaces (spaces of functionals,
not functions) we also include the 𝜕−1

𝜚 that is causal and brings us back into a space of
functions.
Theorem 6.8 (Causality of solving, [Theorem 4.8 Kal+14, p. 21]). Let 𝜚 ∈ ℝ>0, 𝑎 ∈ ℝ.
Let 𝐹, 𝐺 ∈ Conev such that

𝜒ℝ<𝑎
(𝑚)𝜕−1

𝜚 𝐹 = 𝜒ℝ<𝑎
(𝑚)𝜕−1

𝜚 𝐺. (27)

Then 𝜒ℝ<𝑎
(𝑚)𝑆(𝐹) = 𝜒ℝ<𝑎

(𝑚)𝑆(𝐺).
Proof. Let 𝑥 = 𝑆(𝐹) and 𝑦 = 𝑆(𝐺). We need to show 𝜒ℝ<𝑎

(𝑚)𝑥 = 𝜒ℝ<𝑎
(𝑚)𝑦. The

solutions to the regarded differential equation are 𝑥 and 𝑦 but what does this imply for
𝜒ℝ<𝑎

(𝑚)𝑥 and 𝜒ℝ<𝑎
(𝑚)𝑦? Here the causality of 𝜕−1

𝜚 𝐹 and 𝜕−1
𝜚 𝐺 comes into play in order

to relate the truncated solutions to the equations:

𝑥 = 𝜕−1
𝜚 𝐹(𝑥)

⟹ 𝜒ℝ<𝑎
(𝑚)𝑥 = 𝜒ℝ<𝑎

(𝑚)𝜕−1
𝜚 𝐹(𝑥)

6.3
⟹ 𝜒ℝ<𝑎

(𝑚)𝑥 = 𝜒ℝ<𝑎
(𝑚)𝜕−1

𝜚 𝐹(𝜒ℝ<𝑎
(𝑚)𝑥)

(27)
= 𝜒ℝ<𝑎

(𝑚)𝜕−1
𝜚 𝐺(𝜒ℝ<𝑎

(𝑚)𝑥)
and similarly 𝜒ℝ<𝑎

(𝑚)𝑦 = 𝜒ℝ<𝑎
(𝑚)𝜕−1

𝜚 𝐺(𝜒ℝ<𝑎
(𝑚)𝑦)

In other words, 𝜒ℝ<𝑎
(𝑚)𝑥 and 𝜒ℝ<𝑎

(𝑚)𝑦 are both fixed points of the mapping

𝜒ℝ<𝑎
(𝑚)𝜕−1

𝜚 𝐺

which is a strictly contracting since 𝜕−1
𝜚 𝐺 is strictly contracting and 𝜒ℝ<𝑎

(𝑚) is contract-
ing. Hence 𝜒ℝ<𝑎

(𝑚)𝑥 = 𝜒ℝ<𝑎
(𝑚)𝑦.
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6.3. Delay
Causality is able to capture the notion of “the result does not depend on the future” but
it does not distinguish between actually depending on the past or not. Intuitively one
would not consider the differential 𝑥′ in a typical ordinary differential equation of the
type

𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡))

to depend neither on the past nor on the future of 𝑥. Hence we need the analogue
concept to causality for “the result does not depend on the past”.

Definition 6.9 (Amnesic, [Definition 4.9 Kal+14, p. 22]). Let 𝑋, 𝑌 be Hilbert spaces,
𝜚 ∈ ℝ. A mapping

𝑊∶ 𝐻0
𝜚 (ℝ) ⊇ D(𝑊) ⊗ 𝑋 → 𝐻0

𝜚 (ℝ) ⊗ 𝑌

is called causal if for all 𝑎 ∈ ℝ, 𝑥, 𝑦 ∈ D(𝑊)

𝜒ℝ>𝑎
(𝑚)(𝑥 − 𝑦) = 0 ⟹ 𝜒ℝ>𝑎

(𝑚)(𝑊(𝑥) − 𝑊(𝑦)) = 0 ∶

if two arguments do not differ for arguments greater than 𝑎 then the images do not differ
as well. This is equivalent to (for all 𝑎 ∈ ℝ)

𝜒ℝ>𝑎
(𝑚)𝑊 = 𝜒ℝ>𝑎

(𝑚)𝑊𝜒ℝ>𝑎
(𝑚).

If a mapping 𝑊 is not amnesic, we say that 𝑊 has memory or has delay.

In many ways causal and amnesic operators have the same or dual properties: there is
nothing special about ℝ>𝑎 in comparison to ℝ<𝑎 but 𝜕−1

𝜚 is causal for 𝜚 > 0 but amnesic
for 𝜚 < 0 as one can see in (10) and (11). Hence the same theory as developed above for
amnesic operators would replace 𝜚 > 0 by 𝜚 < 0.

When we showed the causality of 𝐹 we actually considered 𝜕−1
𝜚 𝐹 because 𝐹 maps into

a space of functionals (𝐶∞
𝑐+(ℝ; 𝐻)′ or 𝐻−1

𝜚 (ℝ)) and hence we needed 𝜕−1
𝜚 to get into a

function space. This is justified since 𝜕−1
𝜚 is causal.

For defining amnesic or respectively having delay for differential equations we have the
same issue and we cannot use 𝜕−1

𝜚 since it is not amnesic but we can use a duality similar
to the results in Section 4.1. For the following calculation note that taking inverses and
adjoints commute and due to unitarity exp(−𝜚𝑚)−1 = exp(−𝜚𝑚)∗

(𝜕−1
𝜚 )∗ = ((exp(−𝜚𝑚)−1(𝜕 + 𝜚) exp(−𝜚𝑚))−1)

∗

= (exp(−𝜚𝑚)−1(𝜕 + 𝜚)−1 exp(−𝜚𝑚))∗

= exp(−𝜚𝑚)∗((𝜕 + 𝜚)∗)−1 exp(−𝜚𝑚)
= exp(−𝜚𝑚)−1(−𝜕 + 𝜚)−1 exp(−𝜚𝑚)
= − exp(−𝜚𝑚)−1 exp(𝜚𝑚)𝜕−1

−𝜚 exp(𝜚𝑚)−1 exp(−𝜚𝑚).

By the Formula (11) in Corollary 3.6 𝜕−1
−𝜚 is amnesic and hence (𝜕−1

𝜚 )∗ is an amnesic
operator from 𝐻−1

𝜚 (ℝ) ⊗ 𝐻 → 𝐻0
𝜚 (ℝ) ⊗ 𝐻. This allows us to define what a differential

equation with delay is.
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Definition 6.10 (Delay differential equation, [Definition 4.11 Kal+14, pp. 22 sq.]). Let
𝜚 > 0 and 𝐹 ∈ Conev. A differential equation of the form (16), i. e.,

𝜕𝜚𝑢 = 𝐹(𝑢)

is called a delay differential equation if (𝜕−1
𝜚 )∗ 𝐹 has delay.
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7. Applications
7.1. Nemitzki operator
In the introduction of Section 6.3 we already mentioned the intuitively expected result
that a “typical” ordinary differential is causal and amnesic. The formalisation is called
Nemitzki operator :

Definition 7.1 (Nemitzki operator, [Example 4.10 Kal+14, p. 22]). Let 𝑓∶ ℝ × 𝐻 → 𝐻,
𝜚0 ∈ ℝ>0 such that 𝑓 is measurable and uniformly, with respect to the first (time)
variable, Lipschitz continuous, i. e., there exists 𝐿 > 0 such that for all 𝑡 ∈ ℝ and
𝑥, 𝑦 ∈ 𝐻 we have

‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖𝐻 ≤ 𝐿 ‖𝑥 − 𝑦‖𝐻

and additionally 𝑓(·, 0) ∈ ⋂𝜚≥𝜚0
𝐻0

𝜚 (ℝ) ⊗ 𝐻. Those properties ensure, that

𝐹𝜚 ∶ 𝐻0
𝜚 (ℝ) ⊗ 𝐻 → 𝐻0

𝜚 (ℝ) ⊗ 𝐻∶ 𝑢 ↦ (𝑡 ↦ 𝑓(𝑡, 𝑢(𝑡)))

is well-defined for all 𝜚 ≥ 𝜚0 and is the right hand side of a uniquely solvable differential
equation for all 𝜚 > max{𝐿, 𝜚0}. 𝐹𝜚 is called a Nemitzki operator.

Remark (Generalisation). Note that the term Nemitzki operator can be defined in a more
general setting but in our case we need those stricter conditions to apply the developed
theory.

Corollary 7.2 (Nemitzki is amnesic). Let 𝑓, 𝐿, 𝜚 and 𝐹𝜚 be as in the Definition 7.1.
Then 𝐹𝜚 is amnesic and causal.

Proof. Let 𝑎 ∈ ℝ, 𝑢, 𝑣 ∈ 𝐻0
𝜚 (ℝ) ⊗ 𝐻 such that

𝜒ℝ>𝑎
(𝑚)𝑢 = 𝜒ℝ>𝑎

(𝑚)𝑣.

Then for all 𝑡 ∈ ℝ

𝜒ℝ>𝑎
(𝑚)(𝐹𝜚(𝑢) − 𝐹𝜚(𝑣)) = 𝜒ℝ>𝑎

(𝑚)((𝑡 ↦ 𝑓(𝑡, 𝑢(𝑡))) − (𝑡 ↦ 𝑓(𝑡, 𝑣(𝑡))))
⟹ 𝜒ℝ>𝑎

(𝑚)(𝐹𝜚(𝑢) − 𝐹𝜚(𝑣))(𝑡)

=

⎧{{{{
⎨{{{{⎩

𝜒ℝ>𝑎
(𝑚)(𝑡)⏟⏟⏟⏟⏟
=0

(𝑓(𝑡, 𝑢(𝑡)) − 𝑓(𝑡, 𝑣(𝑡))) (𝑡 ≤ 𝑎)

𝜒ℝ>𝑎
(𝑚)(𝑡)⏟⏟⏟⏟⏟
=1

(𝑓(𝑡, (𝜒ℝ>𝑎
(𝑚)𝑢)(𝑡)⏟⏟⏟⏟⏟⏟⏟

=𝑢(𝑡)

)

−𝑓(𝑡, (𝜒ℝ>𝑎
(𝑚)𝑣)(𝑡)⏟⏟⏟⏟⏟⏟⏟

=𝑣(𝑡)

)) (𝑡 > 𝑎)

= 0

where ℝ>𝑎 can also be replaced by ℝ<𝑎. (Of course the two cases for 𝑡 must be adjusted
accordingly.) Hence 𝐹𝜚 is causal and amnesic.
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7.2. Time translation
For formulating delay differential equations we will consider translation of functions as
an operator.

Definition 7.3 (Time translation, [Example 2.12 Kal+14, p. 12]). Let 𝜚 ∈ ℝ>0, ℎ ∈ ℝ
and 𝑢 ∈ 𝐻0

𝜚 (ℝ) ⊗ 𝐻. Define

𝜏ℎ𝑢 ≔ 𝑢(· + ℎ).

The operator 𝜏ℎ ∈ 𝐿(𝐻0
𝜚 (ℝ) ⊗ 𝐻, 𝐻0

𝜚 (ℝ) ⊗ 𝐻) is called time translation operator. For
ℎ < 0, 𝜏ℎ is called the delay operator.

Lemma 7.4. 𝜏ℎ is continuous with ‖𝜏ℎ‖𝐿(𝐻0
𝜚(ℝ)⊗𝐻,𝐻0

𝜚(ℝ)⊗𝐻) = exp(ℎ𝜚).

Proof. Let 𝑢 ∈ 𝐻0
𝜚 (ℝ) ⊗ 𝐻 with ‖𝑢‖𝐻0

𝜚(ℝ)⊗𝐻 = 1. Then

‖𝜏ℎ𝑢‖2
𝜚,0 = ∫

ℝ
‖𝑢(𝑥 + ℎ)‖2

𝐻 exp(−2𝜚𝑥) 𝑑𝑥 = ∫
ℝ

‖𝑢(𝑥)‖2
𝐻 exp(−2𝜚(𝑥 − ℎ)) 𝑑𝑥

= ∫
ℝ

‖𝑢(𝑥)‖2
𝐻 exp(−2𝜚𝑥) exp(−2𝜚(−ℎ)) 𝑑𝑥 = exp(𝜚ℎ)2 ‖𝑢‖2

𝐻0
𝜚(ℝ)⊗𝐻

Hence ‖𝜏ℎ𝑢‖𝜚,0 = exp(𝜚ℎ) ‖𝑢‖𝜚,0.

7.3. Discrete Delay
Finally we have reached the point of considering the typical delay differential equations
and see how they fit into the framework developed so far. A delay differential equation
with discrete delay can typically be written as

𝑥′(𝑡) = 𝑓(𝑥(𝑡 + ℎ1), 𝑥(𝑡 + ℎ2), 𝑥(𝑡 + ℎ3), …, 𝑥(𝑡 + ℎ𝑁))

with pairwise distinct delays 0 ≥ ℎ1 > ℎ2 > … > ℎ𝑁 (𝑁 ∈ ℕ). Here it comes in handy
to split the right hand side into two factors. The first one is

Θ∶ 𝐶∞
𝑐 (ℝ; 𝐻) → 𝐶∞

𝑐 (ℝ; 𝐻𝑁) ⊆ ⋂
𝜂∈ℝ>0

𝐻0
𝜂 (ℝ) ⊗ 𝐻𝑁

Θ𝑥 = (𝜏ℎ1
𝑥, 𝜏ℎ2

𝑥, …, 𝜏ℎ𝑁
𝑥)

that encapsulates the pasts of the argument. (Note that in Definition 7.3 we only defined
𝜏ℎ for 𝐻0

𝜚 (ℝ) ⊗ 𝐻 spaces but it is obvious how to similarly define time translation on
arbitrary functions defined on the whole real line.)

The second factor is

Φ∶ 𝐶∞
𝑐 (ℝ; 𝐻𝑁) → 𝐶∞

𝑐+(ℝ; 𝐻)′.
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With this notation we can calculate the Lipschitz constant of Θ: As shown in Lemma
7.4 the time translation is continuous with

‖𝜏ℎ‖𝐿(𝐻0
𝜚(ℝ)⊗𝐻,𝐻0

𝜚(ℝ)⊗𝐻) = exp(ℎ𝜚).

To use that for Θ note that 𝐻0
𝜚 (ℝ) ⊗ 𝐻𝑁 ≅ (𝐻0

𝜚 (ℝ) ⊗ 𝐻)𝑁. Then

‖Θ‖2
𝐿(𝐻0

𝜚(ℝ)⊗𝐻,𝐻0
𝜚(ℝ)⊗𝐻𝑁) ≤

𝑁
∑
𝑘=1

∥𝜏ℎ𝑘
∥
2

𝐿(𝐻0
𝜚(ℝ)⊗𝐻,𝐻0

𝜚(ℝ)⊗𝐻)

= exp(2𝜚 ℎ1⏟
≤0

) +
𝑁

∑
𝑘=2

exp(2𝜚 ℎ𝑘⏟
≤ℎ2<ℎ1≤0

)

≤ exp(2𝜚ℎ1) + (𝑁 − 1) exp(2𝜚 ℎ2⏟
<0

)

{
↘ 0 + 0 ℎ1 < 0
↘ 1 + 0 ℎ1 = 0

(𝜚 → ∞)

Since ‖Φ ∘ Θ‖Lip ≤ ‖Φ‖Lip ‖Θ‖Lip we also get two different conditions on Φ depending on
the decision if the right hand side solely depends on the past or not:

Theorem 7.5 (Discrete delay, [Theorem 5.8 Kal+14, p. 31]). Let 𝑁 ∈ ℕ, let 0 ≥ ℎ1 >
ℎ2 > … > ℎ𝑁 ∈ ℝ≤0 be the discrete delays, 𝑠 ∈ (0, 1) if ℎ1 = 0 or 𝑠 ∈ ℝ>0 otherwise. Let
𝜚0 ∈ ℝ>0 and Φ∶ 𝐶∞

𝑐 (ℝ, 𝐻𝑁) → 𝐶∞
𝑐+(ℝ; 𝐻)′ such that for all 𝜚 ∈ ℝ>𝜚0

there is 𝐾 ∈ ℝ>0
such that for all 𝑢, 𝑤 ∈ 𝐶∞

𝑐 (ℝ, 𝐻𝑁) and 𝜓 ∈ 𝐶∞
𝑐+(ℝ; 𝐻) we have

|Φ(0)(𝜓)| ≤ 𝐾 ‖𝜓‖−𝜚,1 and |Φ(𝑢)(𝜓) − Φ(𝑤)(𝜓)| ≤ 𝑠 ‖𝜓‖−𝜚,1 ‖𝑢 − 𝑤‖𝜚,0 .

Call Φ𝜚 and Θ𝜚 the appropriate continuous extensions. Then for large enough 𝜚 the
equation

𝜕𝜚𝑢 = Φ𝜚(Θ𝜚𝑢)

has a unique solution 𝑢 ∈ 𝐻0
𝜚 (ℝ) and the solution operator is causal.

Proof. As considered above the theorem we can choose 𝜚 large enough for

‖Φ ∘ Θ‖Lip ≤ ‖Φ‖Lip ‖Θ‖Lip < 𝑠 · 1
𝑠

= 1 since 1
𝑠

> 1 for ℎ1 = 0 and 1
𝑠

> 0 for ℎ1 < 0

By Theorem 5.2 of Picard-Lindelőf this implies the unique solution of the considered
equation with causality of the solution operator guaranteed by Theorem 6.8.

7.4. Continuous delay
A similar approach as for discrete delay can be taken to consider the second type of
typical delay differential equations which are equations with continuous delay. The right
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hand side should not only depend on some points in the past but on the entire history.
The most typical way of formulating this is (compare [Example 5.11 Kal+14, p. 33])

𝑢′(𝑡) = ∫
0

−∞
ℎ(𝑡, 𝜃, 𝜏−

𝜃 𝑢(𝑡)) 𝑑𝜃

with a suitable ℎ∶ ℝ × ℝ<0 × 𝐻 → 𝐻. What “suitable” means we will see after applying
the solution theory.

Here 𝜏− maps a function to its past:

𝜏− ∶ 𝐻ℝ → (𝐻ℝ<0)ℝ

𝜏−
𝜃 𝑢(𝑡) = 𝑢(𝜃 + 𝑡) 𝜃 ∈ ℝ<0, 𝑡 ∈ ℝ

In order to treat this case in the developed manner we generalise that to the factorisation
𝐹 = Φ ∘ Θ with

Θ∶ 𝐶∞
𝑐 (ℝ) → ⋂

𝜂∈ℝ>0

𝐻0
𝜂 (ℝ) ⊗ 𝐿2(ℝ<0; 𝐻)

Θ∶ 𝑢 ↦ 𝜏−𝑢
and Φ∶ ⋂

𝜂∈ℝ>0

𝐻0
𝜂 (ℝ) ⊗ 𝐿2(ℝ<0; 𝐻) → 𝐶∞

𝑐+(ℝ; 𝐻)′

In the example above we get for Φ

Φ(𝑈) =
⎛⎜⎜⎜⎜
⎝

𝑡 ↦ ∫
0

−∞
ℎ(𝑡, 𝜃, 𝑈𝜃(𝑡)) 𝑑𝜃

⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝑔(𝑡,𝑈(𝑡))

⎞⎟⎟⎟⎟
⎠

where 𝑔∶ ℝ × 𝐿2(ℝ<0; 𝐻) → 𝐻 is an intermediate step of abstraction: a function that
takes a time and a past until this time.

As in the previous Section 7.3 we need the Lipschitz constant of Θ in order to find
the necessary Lipschitz condition for Φ. Since Θ is linear, ‖Θ‖Lip is the operator norm
of Hilbert space operators. Let 𝑢 ∈ 𝐶∞

𝑐 (ℝ; 𝐻). Then we compute:

‖Θ(𝑢)‖2
𝜚,0 = ∫

ℝ
‖𝜏−𝑢(𝑡)‖2

𝐿2(ℝ<0;𝐻) exp(−2𝜚𝑡) 𝑑𝑡

= ∫
ℝ

∫
ℝ<0

‖𝑢(𝑡 + 𝜃)‖2
𝐻 𝑑𝜃 exp(−2𝜚𝑡) 𝑑𝑡

= ∫
ℝ<0

∫
ℝ

‖𝑢(𝑡 + 𝜃)‖2
𝐻 exp(−2𝜚𝑡) 𝑑𝑡 𝑑𝜃 Fubini

= ∫
ℝ<0

∫
ℝ

‖𝑢(𝑠)‖2
𝐻 exp(−2𝜚𝑠) 𝑑𝑠 exp(2𝜚𝜃) 𝑑𝜃 𝑠 = 𝑡 + 𝜃

= ∫
ℝ<0

‖𝑢‖2
𝜚,0 exp(2𝜚𝜃) 𝑑𝜃
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= ‖𝑢‖2
𝜚,0 ∫

ℝ<0

exp(2𝜚𝜃) 𝑑𝜃

= ‖𝑢‖2
𝜚,0 ( 1

2𝜚
exp(2𝜚𝜃)∣

0

−∞
) = 1

2𝜚
‖𝑢‖2

𝜚,0

⟹ ‖Θ‖Lip = 1√
2𝜚

The application of the theorem of Fubini is permitted since the double integral is finite
as shown and all integrands are non-negative.

Hence with growing 𝜚 the Lipschitz constant of Φ can grow as well. So we get to the
following conclusion.

Theorem 7.6 (Continuous delay, [Theorem 5.10 Kal+14, p. 32]). Let

Φ∶ ⋂
𝜂∈ℝ>0

𝐻0
𝜂 (ℝ) ⊗ 𝐿2(ℝ<0; 𝐻) → 𝐶∞

𝑐+(ℝ; 𝐻)′

such that there exists 𝜚0 such that for all 𝜚 ∈ ℝ>𝜚0
, there exists 𝐾 ∈ ℝ>0 and 𝑠 <

√
2𝜚

such that for all 𝑢, 𝑤 ∈ ⋂𝜂∈ℝ>0
𝐻0

𝜂 (ℝ) ⊗ 𝐿2(ℝ<0𝐻;) and 𝜓 ∈ 𝐶∞
𝑐+(ℝ; 𝐻) we have

|Φ(0)(𝜓)| ≤ 𝐾 ‖𝜓‖−𝜚,1 and |Φ(𝑢)(𝜓) − Φ(𝑤)(𝜓)| ≤ 𝑠 ‖𝜓‖−𝜚,1 ‖𝑢 − 𝑤‖𝜚,0 .

Let Φ𝜚 be the Lipschitz continuous extension of Φ to a mapping from 𝐻0
𝜚 (ℝ)⊗𝐿2(ℝ<0; 𝐻)

to 𝐻−1
𝜚 (ℝ) ⊗ 𝐻. Then the equation

𝜕𝜚𝑢 = Φ𝜚(𝜏−𝑢)

has a unique solution and the solution operator is causal.
Remark (Possible Lipschitz constant). One possibility to describe 𝑠 depending on 𝜚 is
𝐶𝜚𝑟 with 𝑟 ∈ (0, 1

2) and 𝐶 ∈ ℝ>0. In order to have 𝐶𝜚𝑟 <
√

2𝜚 calculate:

𝐶𝜚𝑟 < (2𝜚) 1
2 ⟺ 𝐶√

2
< 𝜚−𝑟+ 1

2 ⟺ 𝜚 > ( 𝐶√
2

)
1

1
2 −𝑟

= ( 𝐶√
2

)
2

1−2𝑟

.

So choose 𝜚0 > ( 𝐶√
2)

2
𝑟−2 .

Example 7.7 ([Example 5.11 (a) Kal+14, p. 33]). Going back to the beginning of the
section we should ask what the condition for Φ means for 𝑔.
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The first one:

|Φ(0)(𝜓)| ≤ 𝐾 ‖𝜓‖−𝜚,1

implies for 𝑔: ∣∫
ℝ

⟨𝑔(𝑡, 0), 𝜓(𝑡)⟩𝐻 𝑑𝑡 ∣ = |𝑔(·, 0)(𝜓)| ≤ 𝐾 ‖𝜓‖−𝜚,1

where ∣∫
ℝ

⟨𝑔(𝑡, 0), 𝜓(𝑡)⟩𝐻 𝑑𝑡 ∣ = ∣∫
ℝ

⟨𝑔(𝑡, 0), 𝜕−1
−𝜚𝜕−𝜚𝜓(𝑡)⟩

𝐻
𝑑𝑡 ∣

14= ∣∫
ℝ

⟨𝜕−1
𝜚 𝑔(𝑡, 0), 𝜕−𝜚𝜓(𝑡)⟩

𝐻
𝑑𝑡 ∣

≤ ∥𝜕−1
𝜚 𝑔(·, 0)∥

𝜚,0
∥𝜕−𝜚𝜓(𝑡)∥

−𝜚,0
3.5
≤ 1

𝜚
‖𝑔(·, 0)‖𝜚,0 ‖𝜓‖−𝜚,1

Hence we need to impose on 𝑔, that there is a 𝜚0 ∈ ℝ>0 such that for all 𝜚 ∈ ℝ>𝜚0
‖𝑔(·, 0)‖𝜚,0 is finite.

Similarly we can formulate the Lipschitz condition without the test function and in
𝐻0

𝜚 (ℝ) ⊗ 𝐻. Let 𝑢, 𝑤 ∈ ⋂𝜂∈ℝ>0
𝐻0

𝜂 (ℝ) ⊗ 𝐿2(ℝ<0; 𝐻).

‖𝑡 ↦ 𝑔(𝑡, 𝑢(𝑡)) − 𝑔(𝑡, 𝑤(𝑡))‖𝜚,0 ≤ 𝜚𝑠 ‖𝑢 − 𝑤‖𝜚,0

where the extra 𝜚 comes from the step from 𝐻−1
𝜚 (ℝ) ⊗ 𝐻 to 𝐻0

𝜚 (ℝ) ⊗ 𝐻. Written with
integrals, this is

∫
ℝ

‖𝑔(𝑡, 𝑢(𝑡)) − 𝑔(𝑡, 𝑤(𝑡))‖2
𝐻 exp(−2𝜚𝑡) 𝑑𝑡 ≤ 𝜚2𝑠2 ∫

ℝ
‖𝑢(𝑡) − 𝑤(𝑡)‖2

𝐻 exp(−2𝜚𝑡) 𝑑𝑡

One option for 𝑔 to fulfill this estimate is a Lipschitz constant 𝐿 ∈ ℝ>0 such that we
have for all 𝑥, 𝑦 ∈ 𝐿2(ℝ>0; 𝐻) and all 𝑡 ∈ ℝ

‖𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑦)‖𝐻 ≤ 𝐿 ‖𝑥 − 𝑦‖𝐿2(ℝ>0;𝐻)

which would imply

∫
ℝ

‖𝑔(𝑡, 𝑢(𝑡)) − 𝑔(𝑡, 𝑤(𝑡))‖2
𝐻 exp(−2𝜚𝑡) 𝑑𝑡 ≤ ∫

ℝ
𝐿 ‖𝑢(𝑡) − 𝑤(𝑡)‖2

𝐻 exp(−2𝜚𝑡) 𝑑𝑡

= 𝐿 ‖𝑢 − 𝑤‖2
𝜚,0 .

This 𝐿 must therefore fulfill

𝐿 ≤ 𝜚2𝑠2 < 𝜚2 · 2𝜚

for sufficiently large 𝜚. Since 2𝜚3 → ∞, 𝐿 can be chosen arbitrary.
In conclusion we have the following result.
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Corollary 7.8. Let 𝑔∶ ℝ × 𝐿2(ℝ<0; 𝐻) → 𝐻 such that there exists 𝐿 ∈ ℝ>0 such that
for all sufficiently large 𝜚 and all 𝑡 ∈ ℝ and 𝑥, 𝑦 ∈ 𝐿2(ℝ<0; 𝐻)

‖𝑔(·, 0)‖𝜚,0 is finite and ‖𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑦)‖𝐻 ≤ 𝐿 ‖𝑥 − 𝑦‖𝐿2(ℝ<0;𝐻) .

Then the equation
𝜕𝜚𝑢(𝑡) = 𝑔(𝑡, 𝜏−𝑢(𝑡)) (𝑡 ∈ ℝ)

has a unique solution and the solution operator is causal.

If we now plug in ℎ into the definition of 𝑔 and look for suitable conditions on ℎ the
result is very bulky. So we go back to the beginning at the condition for 𝐹 and assume
ℎ to be Lipschitz continuous with respect to the third argument.

Corollary 7.9 ([Example 5.11 (b) Kal+14, p. 33]). Let 𝜚0 ∈ ℝ>0,

ℎ∶ ℝ × ℝ<0 × 𝐻 → 𝐻
with ℎ(𝑡, 𝜃, 0) = 0

and ‖ℎ(𝑡, 𝜃, 𝑥) − ℎ(𝑡, 𝜃, 𝑦)‖𝐻 ≤ 𝐿(𝜃) ‖𝑥 − 𝑦‖𝐻 for all 𝑡 ∈ ℝ, 𝜃 ∈ ℝ<0, 𝑥, 𝑦 ∈ 𝐻
with 𝐿∶ ℝ<0 → ℝ>0

such that ∫
0

−∞
𝐿(𝜃) exp(𝜚𝜃) 𝑑𝜃 < 𝜚 for all 𝜚 ≥ 𝜚0.

(28)

For example 𝐿 can be any constant function. Let

𝐹∶ 𝐶∞
𝑐 (ℝ; 𝐻) → ⋂

𝜂∈ℝ>𝜚0

𝐻0
𝜂 (ℝ) ⊗ 𝐻 ⊂ 𝐶∞

𝑐 (ℝ; 𝐻)′

𝐹(𝑢) = (𝑡 ↦ ∫
0

−∞
ℎ(𝑡, 𝜃, 𝜏−

𝜃 𝑢(𝑡)) 𝑑𝜃 ) .

For all 𝜚 ≥ 𝜚0 let 𝐹𝜚 be the Lipschitz continuous extension of 𝐹 to a mapping from
𝐻0

𝜚 (ℝ) ⊗ 𝐻 to 𝐻−1
𝜚 (ℝ) ⊗ 𝐻. Then the equation

𝜕𝜚𝑢 = 𝐹𝜚𝑢 (29)

has a unique solution and the solution operator is causal.

«««< HEAD

Proof. Let 𝜚 ∈ ℝ≥𝜚0
, 𝑢, 𝑣 ∈ 𝐶∞

𝑐 (ℝ; 𝐻), 𝜓 ∈ 𝐶∞
𝑐+(ℝ; 𝐻). 𝐹𝜚 maps into 𝐻−1

𝜚 (ℝ) ⊗ 𝐻 since

|𝐹 (0)(𝜓)| = ∣∫
ℝ

⟨∫
0

−∞
ℎ(𝑡, 𝜃, 0) 𝑑𝜃 , 𝜓(𝑡)⟩

𝐻

𝑑𝑡 ∣ = ∣⟨0, 𝜓⟩0,0∣ = 0.
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Check the Lipschitz condition for 𝐹.

|𝐹 (𝑢)(𝜓) − 𝐹(𝑣)(𝜓)|

= ∣∫
ℝ

⟨∫
0

−∞
ℎ(𝑡, 𝜃, 𝜏−

𝜃 𝑢(𝑡)) 𝑑𝜃 , 𝜓(𝑡)⟩
𝐻

− ⟨∫
0

−∞
ℎ(𝑡, 𝜃, 𝜏−

𝜃 𝑣(𝑡)) 𝑑𝜃 , 𝜓(𝑡)⟩
𝐻

𝑑𝑡 ∣

= ∣∫
ℝ

∫
0

−∞
⟨ℎ(𝑡, 𝜃, 𝑢(𝑡 + 𝜃)) − ℎ(𝑡, 𝜃, 𝑣(𝑡 + 𝜃)), 𝜓(𝑡)⟩𝐻 𝑑𝜃 𝑑𝑡 ∣

With Fubini this is

= ∣∫
0

−∞
∫

ℝ
⟨ℎ(𝑡, 𝜃, 𝑢(𝑡 + 𝜃)) − ℎ(𝑡, 𝜃, 𝑣(𝑡 + 𝜃)), 𝜓(𝑡)⟩𝐻 𝑑𝑡 𝑑𝜃 ∣

= ∣∫
0

−∞
⟨ℎ(·, 𝜃, 𝑢(· + 𝜃)) − ℎ(·, 𝜃, 𝑣(· + 𝜃)), 𝜓⟩0,0 𝑑𝜃 ∣

By (14) and Cauchy-Schwarz inequality this can be estimated by

≤ ∫
0

−∞
‖𝑡 ↦ ℎ(𝑡, 𝜃, 𝑢(𝑡 + 𝜃)) − ℎ(𝑡, 𝜃, 𝑣(𝑡 + 𝜃))‖𝜚,−1 ‖𝜓‖−𝜚,1 𝑑𝜃

By Corollary 3.5 estimate this with

≤ 1
𝜚

‖𝜓‖−𝜚,1 ∫
0

−∞
‖𝑡 ↦ ℎ(𝑡, 𝜃, 𝑢(𝑡 + 𝜃)) − ℎ(𝑡, 𝜃, 𝑣(𝑡 + 𝜃))‖𝜚,0 𝑑𝜃

= 1
𝜚

‖𝜓‖−𝜚,1 ∫
0

−∞
(∫

ℝ
‖ℎ(𝑡, 𝜃, 𝑢(𝑡 + 𝜃)) − ℎ(𝑡, 𝜃, 𝑣(𝑡 + 𝜃))‖2

𝐻 exp(−2𝜚𝑡) 𝑑𝑡 )
1
2

𝑑𝜃

≤ 1
𝜚

‖𝜓‖−𝜚,1 ∫
0

−∞
(∫

ℝ
𝐿(𝜃)2 ‖𝑢(𝑡 + 𝜃) − 𝑣(𝑡 + 𝜃)‖2

𝐻 exp(−2𝜚𝑡) 𝑑𝑡 )
1
2

𝑑𝜃

With the substitution 𝑠 = 𝑡 + 𝜃 this is

= 1
𝜚

‖𝜓‖−𝜚,1 ∫
0

−∞
(∫

ℝ
𝐿(𝜃)2 ‖𝑢(𝑠) − 𝑣(𝑠)‖2

𝐻 exp(−2𝜚(𝑠 − 𝜃)) 𝑑𝑠 )
1
2

𝑑𝜃

= 1
𝜚

‖𝜓‖−𝜚,1 ∫
0

−∞
𝐿(𝜃) ‖𝑢 − 𝑣‖𝜚,0 exp(𝜚𝜃) 𝑑𝜃

< 1
𝜚

‖𝜓‖−𝜚,1 𝜚 ‖𝑢 − 𝑣‖𝜚,0 = ‖𝜓‖−𝜚,1 ‖𝑢 − 𝑣‖𝜚,0

By Theorem 5.2 of Picard-Lindelőf (29) has a unique solution for all 𝜚 > 𝜚0 and Theorem
6.5 implies that the solution does not depend on 𝜚. By Theorem 6.8 the solution operator
is causal.
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A. Tensor products of Hilbert spaces
Ordinary differential equations are sometimes categorized into scalar equations and sys-
tems of equation. The difference is that the function searched for maps to ℝ or rather ℂ
in our case for scalar equations and maps to ℂ𝑛 (𝑛 ∈ ℕ) for systems of equations. Ex-
plicitly calculating solutions for systems is of course more complicated but regarding the
solution theory it hardly changes anything especially in the solution theory developed
here. That is still true when we generalise further to any Hilbert space instead of the
finite dimensional ℂ𝑛. One might even notice that while reading one easily overlooks
that we are talking throughout about Hilbert space valued functions because everything
works exactly like in ℂ. In order to get to this point we have to properly introduce
𝐿2(ℝ; 𝐻) for an Hilbert space 𝐻 though.

In order to go from the accustomed space 𝐿2(ℝ; ℂ) to 𝐿2(ℝ; 𝐻) an equivalent con-
struction with tensor products is used. Tensor products are not necessarily a common
topic in linear algebra courses which might be supported by the difficulty to get a visual
understanding of them. Therefore several different approaches were taken to define and
understand tensor products. Here we use conjugate bilinear forms as it is done in [Tro11,
A.1].

It is easily possible to skip most of this section, especially the proofs without any
negative impact on the understanding of the rest of the thesis since everything works
out just as expected. Important facts are:

• The definitions of pure tensors A.1 and the tensor product A.3 as the completion
of the algebraic tensor product.

• Operators can be lifted as expected (Definition A.4).

• 𝐿2(ℝ; ℂ) ⊗ 𝐻 ≅ 𝐿2(ℝ; 𝐻) (Theorem A.9)

A.1.

Definition A.1 (Algebraic Tensor (product)). Let 𝐻1, 𝐻2 be complex Hilbert spaces,
𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐻2. Then we consider the conjugate bilinear continuous functional called
pure tensor

𝑥 ⊗ 𝑦∶ 𝐻1 × 𝐻2 → ℂ
(𝜙, 𝜓) ↦ ⟨𝑥, 𝜙⟩𝐻1

⟨𝑦, 𝜓⟩𝐻2
.

Remark (conjugate bilinear). Here the tensors are defined to be conjugate-bilinear (or
antibilinear). That is: (𝑥 ⊗ 𝑦)(𝛼𝜙, 𝛽𝜓) = 𝛼∗𝛽∗(𝑥 ⊗ 𝑦)(𝜙, 𝜓) for any 𝛼, 𝛽 ∈ ℂ. An
analogous definition could be done with bilinear functionals by putting 𝑥 and 𝑦 on the
right side of the inner products. That might feel more familiar but it would also imply
that the scalar multiplication in the tensor product would be a conjugate-linear, that is
𝛼(𝑥 ⊗ 𝑦) = (𝛼∗𝑥 ⊗ 𝑦). So one has to decide which linear structure feels familiar. Here
the linear structure in the tensor product is chosen because we are mostly interested in
the tensor product and the actual definition via functionals is not so much of interest.
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Pure tensors are elements of the vector space of all conjugate bilinear functionals and
therefore inherit the following linear structure.

(
𝑛

∑
𝑖=1

𝑎𝑖(𝑥𝑖 ⊗ 𝑦𝑖)) (𝜙, 𝜓) =
𝑛

∑
𝑖=1

𝑎𝑖(𝑥𝑖 ⊗ 𝑦𝑖)(𝜙, 𝜓) (𝜙 ∈ 𝐻1, 𝜓 ∈ 𝐻2)

for 𝑥𝑖 ∈ 𝐻1, 𝑦𝑖 ∈ 𝐻2, 𝑎𝑖 ∈ ℂ for 𝑖 ∈ {1, …, 𝑛}.
The linear combinations are also conjugate bilinear functionals. We call the space of

these linear combinations

𝑉1
𝑎
⊗ 𝑉2 ≔ Lin {𝑥 ⊗ 𝑦 | 𝑥 ∈ 𝑉1, 𝑦 ∈ 𝑉2}

the algebraic tensor product of the subsets 𝑉1 of 𝐻1 and 𝑉2 of 𝐻2.
Remark. Note that every linear combination of pure tensors can be written as a sum of
pure tensors. For 𝑛 ∈ ℕ, 𝛼𝑖 ∈ ℂ, 𝑥𝑖 ∈ 𝐻1, 𝑦𝑖 ∈ 𝐻2 (𝑖 ∈ {1, …, 𝑛}):

𝑛
∑
𝑖=1

𝛼𝑖(𝑥𝑖 ⊗ 𝑦𝑖) =
𝑛

∑
𝑖=1

(𝛼𝑖𝑥𝑖)⏟
∈𝐻1

⊗𝑦𝑖 ∈ 𝐻1
𝑎
⊗ 𝐻2 (30)

The inner products of 𝐻1 and 𝐻2 induce a sesquilinear mapping on the algebraic
tensor product 𝐻 = 𝐻1

𝑎
⊗ 𝐻2. We define it on pure tensors and extend it sesquilinearly:

⟨𝑥 ⊗ 𝑦, 𝑢 ⊗ 𝑣⟩⊗ = (𝑥 ⊗ 𝑦)(𝑢, 𝑣) = ⟨𝑥, 𝑢⟩𝐻1
⟨𝑦, 𝑣⟩𝐻2

= ⟨𝑢, 𝑥⟩∗
𝐻1

⟨𝑣, 𝑦⟩∗
𝐻2

= (𝑢 ⊗ 𝑣)(𝑥, 𝑦)∗ = ⟨𝑢 ⊗ 𝑣, 𝑥 ⊗ 𝑦⟩∗ (𝑥, 𝑢 ∈ 𝐻1, 𝑦, 𝑣 ∈ 𝐻2)
(31)

The name “product” is justified because we get a copy of 𝐻2 for every element of 𝐻1:
by fixing one particular 𝑥 and 𝜙 ∈ 𝐻1 one gets the trivial embedding that maps any
𝑦 ∈ 𝐻2 to an conjugate-linear functional on 𝐻2. Note that this space of conjugate-linear
continuous functionals on an Hilbert space is isomorphic to 𝐻2 itself.

Furthermore one sees that in the case of finite dimensional 𝐻1 and 𝐻2, we have
dim(𝐻1 ⊗ 𝐻2) = dim(𝐻1) · dim(𝐻2).

The sesquilinear form ⟨·, ·⟩⊗ is denoted as if it was an inner product.

Lemma A.2. For two Hilbert spaces ⟨·, ·⟩⊗ defines an inner product on 𝐻1
𝑎
⊗ 𝐻2.

Proof. By definition ⟨·, ·⟩⊗ is sesquilinear. As seen in (31) ⟨·, ·⟩⊗ is conjugate symmetric

on pure tensors. By sesquilinearity this extends to 𝐻1
𝑎
⊗ 𝐻2.

The representation of elements of 𝐻1
𝑎
⊗𝐻2 as linear combinations of pure tensors is not

unique. Hence it must be checked that ⟨·, ·⟩⊗ is well-defined. This is true since 𝐻1
𝑎
⊗ 𝐻2

is a (linear) vector space and ⟨·, ·⟩⊗ is defined to be sesquilinear. In detail, let

𝑛
∑

𝑖
𝑎𝑖(𝑥𝑖 ⊗ 𝑦𝑖) =

𝑚
∑

𝑖
𝑏𝑗(𝑢𝑗 ⊗ 𝑣𝑗) ∈ 𝐻1 ⊗ 𝐻2

with 𝑛, 𝑚 ∈ ℕ, 𝜙, 𝑥𝑖, 𝑢𝑗 ∈ 𝐻1, 𝑎𝑖, 𝑏𝑗 ∈ ℂ, 𝜓, 𝑦𝑖, 𝑣𝑗 ∈ 𝐻2 for 𝑗 ∈ {1, …, 𝑚}𝑖 ∈ {1, …, 𝑛}.
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Then for all 𝜙 ∈ 𝐻1 and 𝜓 ∈ 𝐻2

⟨
𝑛

∑
𝑖

𝑎𝑖(𝑥𝑖 ⊗ 𝑦𝑖), 𝜙 ⊗ 𝜓⟩
⊗

− ⟨
𝑚

∑
𝑖

𝑏𝑗(𝑢𝑗 ⊗ 𝑣𝑗), 𝜙 ⊗ 𝜓⟩
⊗

= (
𝑛

∑
𝑖

𝑎𝑖(𝑥𝑖 ⊗ 𝑦𝑖)) (𝜙, 𝜓) − (
𝑚

∑
𝑖

𝑏𝑗(𝑢𝑗 ⊗ 𝑣𝑗)) (𝜙, 𝜓)

= ((
𝑛

∑
𝑖

𝑎𝑖(𝑥𝑖 ⊗ 𝑦𝑖)) − (
𝑚

∑
𝑖

𝑏𝑗(𝑢𝑗 ⊗ 𝑣𝑗))) (𝜙, 𝜓)

By the linearity in the second argument, we have for all 𝑤 ∈ 𝐻1
𝑎
⊗ 𝐻2

⟨
𝑛

∑
𝑖

𝑎𝑖(𝑥𝑖 ⊗ 𝑦𝑖), 𝑤⟩
⊗

− ⟨
𝑚

∑
𝑖

𝑏𝑗(𝑢𝑗 ⊗ 𝑣𝑗), 𝑤⟩
⊗

= 0.

This shows that ⟨·, ·⟩⊗ is a function of the first argument for every second argument and
by conjugate symmetry ⟨·, ·⟩⊗ ⟨·, ·⟩⊗ is a function of the second argument for every first
argument.

For the positivity consider for 𝑛 ∈ ℕ, 𝑥𝑖 ∈ 𝐻1, 𝑦𝑖 ∈ 𝐻2, 𝑎𝑖 ∈ ℂ, 𝑧𝑖 = 𝑎𝑖𝑥𝑖 for
𝑖 ∈ {1, …, 𝑛}

⟨
𝑛

∑
𝑖=1

𝑎𝑖(𝑥𝑖 ⊗ 𝑦𝑖),
𝑛

∑
𝑗=1

𝑎𝑗(𝑥𝑗 ⊗ 𝑦𝑗)⟩ = ⟨
𝑛

∑
𝑖=1

(𝑧𝑖 ⊗ 𝑦𝑖),
𝑛

∑
𝑗=1

(𝑧𝑗 ⊗ 𝑦𝑗)⟩
⊗

=
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

⟨𝑧𝑖, 𝑧𝑗⟩𝐻1
⟨𝑦𝑖, 𝑦𝑗⟩𝐻2

Note that the (so called Gramian) matrices 𝐺1 = (⟨𝑧𝑖, 𝑧𝑗⟩)
𝑖,𝑗

) and 𝐺2 = (⟨𝑦𝑖, 𝑦𝑗⟩)
𝑖,𝑗

are hermitian since ⟨·, ·⟩𝐻1
and ⟨·, ·⟩𝐻2

is conjugate symmetric. Hence they can be
diagonalised. 𝐺1 and 𝐺2 are positive semi-definite since ⟨·, ·⟩𝐻1

and ⟨·, ·⟩𝐻2
are positive

definite. Positive semi-definite diagonal matrices have a square root and hence 𝐺1 and
𝐺2 have hermitian square roots. Call them 𝐴𝑠 = (𝑎𝑠

𝑖𝑗)𝑖,𝑗
(𝑠 ∈ {1, 2}). With them the

sum can be rewritten as (all sums going from 1 to 𝑛)

∑
𝑖

∑
𝑗

∑
𝑘1

𝑎1
𝑖𝑘1

𝑎1
𝑘1𝑗 (∑

𝑘2

𝑎2
𝑖𝑘2

𝑘2𝑗2)

= ∑
𝑘1

∑
𝑘2

(∑
𝑖

𝑎1
𝑖𝑘1

𝑎2
𝑖𝑘2

) (∑
𝑗

𝑎1
𝑘1𝑗𝑎2

𝑘2𝑗
) (Rearranging sums)

= ∑
𝑘1

∑
𝑘2

(∑
𝑖

𝑎1
𝑖𝑘1

𝑎2
𝑖𝑘2

) (∑
𝑗

𝑎1
𝑗𝑘1

𝑎2
𝑗𝑘2

)
∗

(𝐴1, 𝐴2 hermitian)
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= ∑
𝑘1

∑
𝑘2

∣∑
𝑖

𝑎1
𝑖𝑘1

𝑎2
𝑖𝑘2

∣
2

(𝑐𝑐∗ = |𝑐|2, 𝑐 ∈ ℂ)

≥ 0.

To show, that ⟨·, ·⟩⊗ is positive definite (not only semi-definite as we just showed),

consider any 𝑎 ∈ 𝐻1
𝑎
⊗ 𝐻2 with ⟨𝑎, 𝑎⟩⊗ = 0 and a pure tensor 𝜙 ⊗ 𝜓 ∈ 𝐻1

𝑎
⊗ 𝐻2. Then

by the Cauchy-Schwarz-Inequality that holds for all symmetric sesquilinear forms:

|𝑎(𝜙, 𝜓)| = ∣⟨𝑎, 𝜙 ⊗ 𝜓⟩⊗∣ ≤ √⟨𝑎, 𝑎⟩⊗√⟨𝜙 ⊗ 𝜓, 𝜙 ⊗ 𝜓⟩⊗ = 0.

Thus, 𝑎 = 0 (as a function).

So far everything was pure linear algebra. We are interested in (infinite dimensional)
Hilbert spaces. Hence the question arises if the (algebraic) tensor product of two Hilbert
spaces is again complete, that is it is an Hilbert space. Since we only allowed finite linear
combinations it might not surprise that 𝐻1

𝑎
⊗𝐻2 is in general not an Hilbert space. That

is the reason why we consider the completion.

Definition A.3 (Tensor product). Let 𝐻1 and 𝐻2 be Hilbert spaces. Let 𝐻1 ⊗ 𝐻2 be
the completion of 𝐻1

𝑎
⊗ 𝐻2 with respect to the inner product ⟨·, ·⟩⊗. The inner product

of this Hilbert space is denoted by ⟨·, ·⟩𝐻1⊗𝐻2
.

A.1. Operators on tensor products
We study operators on Hilbert spaces. Hence we have to know how operators can be
lifted to tensor products (also see [Kal+14, Remark 2.9 (d)]). For pure tensors and hence
for linear combinations it is obvious how to define it. Following is the proof that this is
indeed well-defined and can be extended to the completion.

Definition A.4 (Algebraic Tensorproduct of linear operators). Let 𝐻1, 𝐻2, 𝐾1, 𝐾2 be
complex Hilbert spaces and 𝐴∶ 𝐻1 ⊇ D(𝐴) → 𝐾1, 𝐵∶ 𝐻2 ⊃ D(𝐵) → 𝐾2 be linear
operators. Then define the algebraic tensor product

𝐴
𝑎
⊗ 𝐵∶ 𝐻1 ⊗ 𝐻2 ⊃ D(𝐴)

𝑎
⊗ D(𝐵) → 𝐾1 ⊗ 𝐾2

𝑥 ⊗ 𝑦 ↦ 𝐴𝑥 ⊗ 𝐵𝑦

and extend it linearly. Then 𝐴
𝑎
⊗ 𝐵 is a well-defined linear mapping.

Proof. For clarification note that here 𝐴
𝑎
⊗ 𝐵 is considered as a subspace of (𝐻1 ⊗ 𝐻2) ×

(𝐾1 ⊗ 𝐾2) (i. e. the graph of 𝐴
𝑎
⊗ 𝐵).

𝐴
𝑎
⊗ 𝐵 is linear. Therefore it is enough to show that (0, 𝑤) ∈ 𝐴

𝑎
⊗ 𝐵 implies 𝑤 = 0. Let

𝑤 =
𝑛

∑
𝑖=1

(𝐴𝜙𝑖 ⊗ 𝐵𝜓𝑖) with
𝑛

∑
𝑖=1

(𝜙𝑖 ⊗ 𝜓𝑖) = 0
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where 𝜙𝑖 ∈ D(𝐴), 𝜓𝑖 ∈ D(𝐵) (𝑖 = 1, …, 𝑛).
The sets {𝜙𝑖 | 𝑖 ∈ {1, …, 𝑛}} and {𝜓𝑖 | 𝑖 ∈ {1, …, 𝑛}} are not necessarily linear inde-

pendent. Hence choose a linear independent set {𝑥𝑗 ∈ D(𝐴) ∣ 𝑗 ∈ {1, …, 𝑘}} such that
all 𝜙𝑖, and a linear independent set {𝑦𝑙 ∈ D(𝐵) | 𝑙 ∈ {1, …, 𝑚}} such that all 𝜓𝑖 can be
represented as:

𝜙𝑖 =
𝑘

∑
𝑗=1

𝛽𝑖
𝑗𝑥𝑗, 𝜓𝑖 =

𝑚
∑
𝑙=1

𝛾𝑖
𝑙 𝑦𝑙 𝑖 ∈ {1, …, 𝑛}.

Then

𝑤 =
𝑛

∑
𝑖=1

(𝐴𝜙𝑖 ⊗ 𝐵𝜓𝑖) =
𝑛

∑
𝑖=1

𝐴 (
𝑘

∑
𝑗=1

𝛽𝑖
𝑗𝑥𝑗) ⊗ 𝐵 (

𝑚
∑
𝑙=1

𝛾𝑖
𝑙 𝑦𝑙)

=
𝑛

∑
𝑖=1

𝑘
∑
𝑗=1

𝑚
∑
𝑙=1

𝛽𝑖
𝑗𝛾𝑖

𝑙 (𝐴𝑥𝑗 ⊗ 𝐵𝑦𝑙)
(32)

and

0 =
𝑛

∑
𝑖=1

(𝜙𝑖 ⊗ 𝜓𝑖) =
𝑛

∑
𝑖=1

𝑘
∑
𝑗=1

𝑚
∑
𝑙=1

𝛽𝑖
𝑗𝛾𝑖

𝑙 (𝑥𝑗 ⊗ 𝑦𝑙) . (33)

For proving 𝑤 = 0 we need to show that products of the form 𝛽𝑖
𝑗𝛾𝑖

𝑙 in (32) all van-
ish. By (33) it suffices that {𝑥𝑗 ⊗ 𝑦𝑙 ∈ 𝐻1 ⊗ 𝐻2 ∣ 𝑗 ∈ {1, …, 𝑘}; 𝑙 ∈ {1, …, 𝑚}} is linear
independent.

Consider a linear combination 0 = ∑𝑘
𝑖=1 ∑𝑚

𝑗=1 𝛼𝑗𝑙(𝑥𝑗 ⊗ 𝑦𝑙) and 𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐻2. Then

0 = (
𝑘

∑
𝑗=1

𝑚
∑
𝑙=1

𝛼𝑗𝑙(𝑥𝑗 ⊗ 𝑦𝑙)) (𝑥, 𝑦) =
𝑘

∑
𝑗,1

𝑚
∑
𝑙=1

𝛼𝑗𝑙 ⟨𝑥𝑗, 𝑥⟩
𝐻1

⟨𝑦𝑙, 𝑦⟩𝐻2

= ⟨
𝑘

∑
𝑗=1

𝑚
∑
𝑙=1

𝛼𝑗𝑙 ⟨𝑦𝑙, 𝑦⟩𝐻2
𝑥𝑗, 𝑥⟩ .

This holds for all 𝑥 ∈ 𝐻1. Thus we get ∑𝑘,𝑚
𝑖,𝑗=1 𝛼𝑖𝑗 ⟨𝑦𝑙, 𝑦⟩𝐻2

𝑥𝑗 = 0. Since {𝑥𝑗 ∣ 𝑗 = 1, …, 𝑘}
is linear independent, we get

0 =
𝑚

∑
𝑙=1

𝛼𝑗𝑙 ⟨𝑦𝑙, 𝑦⟩ = ⟨
𝑚

∑
𝑙=1

𝛼𝑗𝑙𝑦𝑙, 𝑦⟩ for 𝑗 = 1, …, 𝑘 and all 𝑦 ∈ 𝐻2.

Again we get ∑𝑚
𝑙=1 𝛼𝑗𝑙𝑦𝑙 = 0 for 𝑗 ∈ {1, …, 𝑘} and by linear independence 𝛼𝑗𝑙 = 0 for all

𝑗 ∈ {1, …, 𝑘} and 𝑙 ∈ {1, …, 𝑚}.
This concludes the proof.

Definition A.5 (Tensorproduct of linear operators). Let 𝐴, 𝐵 be linear operators and
𝐴

𝑎
⊗ 𝐵 be closable. Then define 𝐴 ⊗ 𝐵 as the closure of 𝐴

𝑎
⊗ 𝐵.
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As we will see in the following Lemma A.7 the existence proof of the closure depends
on the adjoint operators. For the Definition 2.4 of adjoint operators we needed that
the operator is densely defined. For the algebraic tensor product of two densely defined
operators this is the case as we have to show.

Lemma A.6 (Dense subsets). Let 𝑆1 ⊆ 𝐻1 and 𝑆2 ⊆ 𝐻2 such that Lin 𝑆𝑖 is dense in
𝐻𝑖 (𝑖 ∈ {1, 2}). Then 𝑆1

𝑎
⊗ 𝑆2 is dense in 𝐻1 ⊗ 𝐻2.

Proof. Firstly consider a pure tensor 𝑥 ⊗ 𝑦 ∈ 𝐻1 ⊗ 𝐻2 that is to be approximated by
elements of 𝑆1

𝑎
⊗ 𝑆2.

There exist sequences (𝑥𝑛)𝑛∈ℕ in Lin 𝑆1 and (𝑦𝑛)𝑦∈ℕ in Lin 𝑆2, such that 𝑥𝑛 → 𝑥 in
𝐻1 and 𝑦𝑛 → 𝑦 in 𝐻2 as 𝑛 → ∞. Then 𝑥𝑛 ⊗ 𝑦𝑛 ∈ Lin 𝑆1

𝑎
⊗ Lin 𝑆2 = 𝑆1

𝑎
⊗ 𝑆2. For the

approximation of 𝑥 ⊗ 𝑦 by 𝑥𝑛 ⊗ 𝑦𝑛 reduce it to approximation in 𝐻1 and 𝐻2:

‖𝑥 ⊗ 𝑦 − 𝑥𝑛 ⊗ 𝑦𝑛‖𝐻1⊗𝐻2
≤ ‖𝑥𝑛 ⊗ 𝑦𝑛 − 𝑥 ⊗ 𝑦𝑛‖ + ‖𝑥 ⊗ 𝑦𝑛 − 𝑥 ⊗ 𝑦‖𝐻1⊗𝐻2

Triangle ineq.

= ‖(𝑥𝑛 − 𝑥) ⊗ 𝑦𝑛‖𝐻1⊗𝐻2
+ ‖𝑥 ⊗ (𝑦𝑛 − 𝑦)‖𝐻1⊗𝐻2

(31)
= ‖𝑥𝑛 − 𝑥‖𝐻1

‖𝑦𝑛‖𝐻2
+ ‖𝑥‖𝐻1

‖𝑦𝑛 − 𝑦‖𝐻2

→ 0 · ‖𝑦‖𝐻2
+ ‖𝑥‖𝐻1

· 0 → 0 (𝑛 → ∞)

Linear combinations of pure tensors (that is, elements of 𝐻1
𝑎
⊗𝐻2), can be approximated

by approximating the summands. Since 𝐻1
𝑎
⊗ 𝐻2 is dense in 𝐻1 ⊗ 𝐻2 by Definition A.3,

𝑆1
𝑎
⊗ 𝑆2 is dense in 𝐻1 ⊗ 𝐻2.

Lemma A.7. Let 𝐴∶ 𝐻1 ⊇ D(𝐴) → 𝐾1, 𝐵∶ 𝐻2 ⊇ D(𝐵) → 𝐾2 be densely defined,
closable, linear operators. Then 𝐴

𝑎
⊗ 𝐵 is closable and

𝐴 ⊗ 𝐵 = 𝐴
𝑎
⊗ 𝐵 ⊆ (𝐴∗ 𝑎

⊗ 𝐵∗)∗ (34)

Proof. It is enough to show 34 since a closed subset of the (graph of the) closed operator
(𝐴∗ 𝑎

⊗ 𝐵∗)∗ must be a closed operator. 𝐴∗ and 𝐵∗ are densely defined by Lemma 2.8
since 𝐴 and 𝐵 are closable. Hence 𝐴∗ 𝑎

⊗ 𝐵∗ is densely defined by Lemma A.6 and thus
(𝐴∗ 𝑎

⊗ 𝐵∗)∗ is a well-defined, closed, linear operator by Lemma 2.6. Since (𝐴∗ 𝑎
⊗ 𝐵∗)∗ is

closed, it is enough to check, that every element 𝜂 of D(𝐴
𝑎
⊗ 𝐵) satisfies

⟨(𝐴∗ 𝑎
⊗ 𝐵∗)𝜉, 𝜂⟩

𝐻1⊗𝐻2

= ⟨𝜉, (𝐴
𝑎
⊗ 𝐵)𝜂⟩

𝐾1⊗𝐾2

for all 𝜉 ∈ D(𝐴∗ 𝑎
⊗ 𝐵∗)

since this implies 𝜂 ∈ D((𝐴∗ 𝑎
⊗ 𝐵∗)∗) and (𝐴∗ 𝑎

⊗ 𝐵∗)∗𝜂 = (𝐴
𝑎
⊗ 𝐵)𝜂. Write

𝜂 =
𝑚

∑
𝑗=1

𝑢𝑗 ⊗ 𝑣𝑗 (𝑚 ∈ ℕ, 𝑢𝑗 ∈ D(𝐴), 𝑣𝑗 ∈ D(𝐵), 𝑗 ∈ {1, …, 𝑚})

and 𝜉 =
𝑛

∑
𝑖=1

𝑥𝑖 ⊗ 𝑦𝑖 (𝑛 ∈ ℕ, 𝑥𝑖 ∈ D(𝐴∗), 𝑦𝑖 ∈ D(𝐵∗), 𝑖 ∈ {1, …, 𝑛}).
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Then

⟨(𝐴∗ 𝑎
⊗ 𝐵∗)𝜉, 𝜂⟩ =

𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

⟨𝐴∗𝑥𝑖, 𝑢𝑗⟩𝐾1
⟨𝐵∗𝑦𝑖, 𝑣𝑗⟩𝐾2

=
𝑛

∑
𝑖=1

𝑚
∑
𝑗=1

⟨𝑥𝑖, 𝐴𝑢𝑗⟩𝐾1
⟨𝑦𝑖, 𝐵𝑣𝑗⟩𝐾2

= ⟨𝜉, (𝐴
𝑎
⊗ 𝐵)𝜂⟩

𝐾1⊗𝐾2

.

Example A.8. The only case of operators on tensor products we will see are those of the
form 𝐴 ⊗ id ∶ 𝐻1 ⊗ 𝐻2 ⊃ D(𝐴) ⊗ 𝐻2 with id being the identity on 𝐻2. In those cases we
will write 𝐴 both to denote 𝐴∶ 𝐻1 ⊃ D(𝐴) as well as 𝐴 ⊗ id. In the case of bounded 𝐴
we have for the operator norm ‖𝐴‖𝐿(𝐻1,𝐻1) = ‖𝐴 ⊗ id‖𝐿(𝐻1⊗𝐻2,𝐻1⊗𝐻2) as one can easily
check for pure tensors.

A.2. Hilbert space valued 𝐿2-space
The intention of introducing tensor products was to generalise the solution theory from
scalar differential equations to systems of differential equations and even further to any
Hilbert space valued functions, not just ℂ𝑛. Now we will show that tensor products are
indeed the suitable tool to consider those systems.

When the ranges 𝐻 are finite-dimensional it can be easily seen, that 𝐿2(ℝ) ⊗ 𝐻 ≅
𝐿2(ℝ; 𝐻) where here the last is the space of square-integrable vector-valued functions:
every 𝑓 ∈ 𝐿2(ℝ; 𝐻) can be written as a vector of 𝐿2(ℝ) functions hence 𝐿2(ℝ; 𝐻) is a
direct sum of dim(𝐻) copies of 𝐿2(ℝ). In the infinite-dimensional case this idea still
works out but needs more justification.

Theorem A.9. Let 𝐻 be a complex Hilbert space and (Ω, Σ, 𝜇) a measure space. Then
𝐿2(Ω, Σ, 𝜇; ℂ) ⊗ 𝐻 is isometrically isomorphic to 𝐿2(Ω, Σ, 𝜇; 𝐻), the space of square-
integrable 𝐻-valued functions via the identification

𝑓 ⊗ 𝜙 ↦ (𝑥 ↦ 𝑓(𝑥)𝜙) (35)

Proof. Let 𝐿 = 𝐿2(Ω, Σ, 𝜇; ℂ) and 𝐾 = 𝐿2(Ω, Σ, 𝜇; 𝐻).
The idea is the same as for the finite dimensional case: given an 𝑠 ∈ 𝐾 and a basis

of 𝐻, one can determine for every 𝜙 of the basis and every 𝑥 ∈ Ω the portion of 𝜙 in
𝑠(𝑥) ∈ 𝐻: ⟨𝜙, 𝑠(𝑥)⟩𝐻. For all 𝑥 ∈ Ω together this gives a function 𝑓𝜙 ∈ 𝐿. By the given
identification 𝑠 is identified with a pure tensor.

Let 𝑈 be a mapping to 𝐾 defined for all pairs 𝑓 ∈ 𝐿, 𝜙 ∈ 𝐻 by the identification (35).
𝑈 is isometric:

‖𝑓 ⊗ 𝜙‖2
𝐿⊗𝐻 = ⟨𝑓, 𝑓⟩𝐿 ⟨𝜙, 𝜙⟩𝐻 = ‖𝜙‖2

𝐻 ∫
Ω

|𝑓|2 𝑑𝜇

= ∫
Ω

|𝑓|2 ‖𝜙‖2
𝐻 𝑑𝜇 = ∫

Ω
‖𝑓(𝑥)𝜙‖2

𝐻 𝜇(𝑑𝑥) = ‖𝑈(𝑓 ⊗ 𝜙)‖2
𝐾 .

53



We can extend 𝑈 linearly to 𝐿
𝑎
⊗ 𝐻. We have to show that it is a well-defined mapping.

Let 0 = ∑𝑛
𝑖=1 𝑓𝑖 ⊗ 𝜙𝑖 ∈ 𝐿

𝑎
⊗ 𝐻. (By (30) this is covers all linear combinations of pure

tensors.) We have to show, that ∑𝑛
𝑖=1 𝑓𝑖𝜙𝑖 = 0. Consider

⟨
𝑛

∑
𝑖=1

𝑓𝑖𝜙𝑖,
𝑛

∑
𝑖=1

𝑓𝑗𝜙𝑗⟩
𝐾

=
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

∫
Ω

⟨𝑓𝑖𝜙𝑖, 𝑓𝑗𝜙𝑗⟩𝐻
𝑑𝜇

=
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

∫
Ω

𝑓𝑖𝑓∗
𝑗 ⟨𝜙𝑖, 𝜙𝑗⟩𝐻

=
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

⟨𝑓𝑖, 𝑔⟩𝐿 ⟨𝜙𝑖, 𝜓⟩𝐻

= ⟨
𝑛

∑
𝑖=1

𝑓𝑖 ⊗ 𝜙𝑖,
𝑛

∑
𝑗=1

𝑓𝑗 ⊗ 𝜙𝑗⟩
𝐿⊗𝐻

= ⟨0, 0⟩𝐿⊗𝐻 = 0.

Since ⟨·, ·⟩𝐾 is positive definite, ∑𝑛
𝑖=1 𝑓𝑖𝜙𝑖 = 0. By linearity of 𝑈, 𝑈 is well-defined.

Next, we show that that 𝑈 is an isometry on 𝐿
𝑎
⊗𝐻. Consider 𝑓 = ∑𝑛

𝑖=1 𝑓𝑖⊗𝜙𝑖 ∈ 𝐿
𝑎
⊗𝐻.

Then

∥
𝑛

∑
𝑖=1

𝑓𝑖 ⊗ 𝜙𝑖∥
2

𝐿⊗𝐻

=
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

⟨𝑓𝑖, 𝑓𝑗⟩𝐿
⟨𝜙𝑖, 𝜙𝑗⟩𝐻

=
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

∫
Ω

𝑓𝑖𝑓∗
𝑗 𝑑𝜇 ⟨𝜙𝑖, 𝜙𝑗⟩𝐻

=
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

∫
Ω

⟨𝑓𝑖(𝑥)𝜙𝑖, 𝑓𝑗(𝑥)𝜙𝑗⟩𝐻
𝜇(𝑑𝑥)

= ∫
Ω

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

⟨𝑓𝑖(𝑥)𝜙𝑖, 𝑓𝑗(𝑥)𝜙𝑗⟩𝐻
𝜇(𝑑𝑥)

= ∫
Ω

∥
𝑛

∑
𝑖=1

𝑓𝑖(𝑥)𝜙𝑖∥
2

𝐻

𝜇(𝑑𝑥) = ∥
𝑛

∑
𝑖=1

𝑓𝑖𝜙𝑖∥
2

𝐾

= ∥𝑈 (
𝑛

∑
𝑖=1

𝑓𝑖 ⊗ 𝜙𝑖)∥
2

𝐾

.

Since 𝑈 is an isometry on 𝐿
𝑎
⊗𝐻 it is in particular continuous on a dense subset of 𝐿

𝑎
⊗𝐻

and can by Lemma 2.3 be extended to the completion 𝐿 ⊗ 𝐻 as an isometry. It remains
to show that 𝑈 is surjective. For this we need to show that the range of 𝑈 on 𝐿

𝑎
⊗ 𝐻 is

dense in 𝐾:

Lemma A.10. 𝑈(𝐿
𝑎
⊗ 𝐻) is dense in 𝐾.

Proof. Let 𝑆 be a orthonormal basis of 𝐻, possibly non-countable. Let 𝑡 ∈ 𝐾. Let 𝑡𝑠 ∈ 𝐿
with 𝑡𝑠(𝑥) = ⟨𝑡(𝑥), 𝑠⟩𝐻 be the portion of 𝑡 in the direction 𝑠. Let

𝑆𝑛 = {𝑠 ∈ 𝑆 ∣ ‖𝑡𝑠‖𝐿 > 1
𝑛

} .

54



Let 𝑆′ ⊆ 𝑆𝑛 be finite. Then by Bessel’s inequality, see [V.4.3 Wer11, pp. 233 sq.]

‖𝑡‖2
𝐾 = ∫

Ω
‖𝑡(𝑥)‖2

𝐻 𝑑𝜇 ≥ ∫
Ω

∑
𝑠∈𝑆′

|⟨𝑡(𝑥), 𝑠⟩|2 𝑑𝜇

= ∑
𝑠∈𝑆′

∫
Ω

|⟨𝑡(𝑥), 𝑠⟩|2 𝑑𝜇 = ∑
𝑠∈𝑆′

‖𝑡𝑠‖2
𝐿 > 1

𝑛2 ∑
𝑠∈𝑆′

1

If any 𝑆𝑛 was infinite, ‖𝑡‖2
𝐾 would be unbounded, a contradiction. Hence

̃𝑆 = ⋃
𝑛∈ℕ

𝑆𝑛 = {𝑠 ∈ 𝑆 | 𝑡𝑠 ≠ 0} = {𝑠1, …}

is countable. By Parseval’s identity in 𝐻, see [Satz V.4.9 Wer11, p. 236]

lim
𝑘→∞

∥ 𝑡 −
𝑘

∑
𝑖=1

𝑡𝑠𝑖
𝑠𝑖 ∥

2

𝐾

= lim
𝑘→∞

∫
Ω

∥ 𝑡 −
𝑘

∑
𝑖∈ℕ

𝑡𝑠𝑖
𝑠𝑖∥

2

𝐻

𝑑𝜇

= ∫
Ω

lim
𝑘→∞

∥ 𝑡 −
𝑘

∑
𝑖∈ℕ

𝑡𝑠𝑖
𝑠𝑖∥

2

𝐻

𝑑𝜇 = 0

where the exchange of limit and integral is justified by the monotone convergence theorem
together with Parseval’s identity. Hence 𝑡 can be approximated by elements of 𝑈(𝐿⊗𝐻),
i. e. 𝑈(𝐿 ⊗ 𝐻) is dense in 𝐾.
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B. Density of 𝐶∞
𝑐 (ℝ) in 𝐿2(ℝ)

Elements of the common Banach and Hilbert spaces like 𝐿2(ℝ) are functions with a
number of properties that makes them very unhandy to work with: they are only defined
as equivalence classes, they are not differentiable or even continuous and not closed under
multiplication. So often one can only write down explicit formulas for some special
functions like differentiable ones. But then it is often possible to extend the results to
all of 𝐿2(ℝ) by the tools that the functional analysis provides via taking limits. But in
order to extend any results we have to know that we can approximate functions in 𝐿2(ℝ)
via nice functions. The “nice” functions that are usually used are smooth functions with
compact support.

Definition B.1 (Testfunctions). Define for any Hilbert space 𝐻

𝐶∞
𝑐 (ℝ; 𝐻) ≔ {𝑓∶ ℝ → 𝐻 ∣

supp(𝑓) is compact and
𝑓 (𝑛) is continuously differentiable for every 𝑛 ∈ ℕ

} .

If the range is not given, we take 𝐻 = ℂ: 𝐶∞
𝑐 (ℝ) = 𝐶∞

𝑐 (ℝ, ℂ).

To investigate an arbitrary 𝑓 ∈ 𝐿2(ℝ), we approximate 𝑓 with smooth functions with
bounded support. To be able to do that we truncate 𝑓 and “make it smooth” with
an operation called convolution. For this procedure we need the following family of
functions:

Definition B.2 (Friedrichs mollifier). A sequence (𝛿𝑛)𝑛∈ℕ in 𝐶∞
𝑐 (ℝ) of smooth functions

is called a Friedrichs mollifier or 𝛿-sequence if the following holds for all 𝑛 ∈ ℕ:

𝛿𝑛 ≥ 0, (36)

supp(𝛿𝑛) ⊆ [− 1
𝑛

, 1
𝑛

] , (37)

∫
ℝ

𝛿𝑛 = 1. (38)

So the 𝛿𝑛 are bumps around 0 that get steeper while 𝑛 grows. One might think of
them as approximations of a “function” that is zero on ℝ \ {0} and such big infinity at
{0} that the integral is 1 even though there is of course no such function.

The existence of such a sequence, even the existence of any elements of 𝐶∞
𝑐 (ℝ) is not

completely obvious. That is why we give one example:

Example B.3 (Friedrichs mollifier). Let ̂𝛿 ∶ ℝ → ℂ, 𝑥 ↦ {
exp(− 1

1−𝑥2 ) −1 < 𝑥 < 1
0 otherwise

.

Apparently supp( ̂𝛿) ⊆ [−1, 1]. To show that all derivatives exist, note that on (−1, 1) ̂𝛿 is
smooth as a composition of smooth functions. We have to check that lim𝑥→±1

̂𝛿(𝑘)(𝑥) = 0
for every 𝑘 ∈ ℕ0. Consider any derivative of exp(− 1

1−𝑥2 ). It is of the form

exp (− 1
1 − 𝑥2 ) 𝑃(𝑥)

(1 − 𝑥2)𝑛 with a polynomial 𝑃 .
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For 𝑥 → ±1 the exponential term dominates over any polynomial and hence

lim
𝑥→±1

𝛿(𝑘)(𝑥) = 0.

̂𝛿 does not satisfy the integration conditions. Therefore consider

𝛿 ∶= (∫
ℝ

̂𝛿(𝑥) 𝑑𝑥 )
−1

̂𝛿,

𝛿𝑛 ∶ ℝ → ℂ, 𝑥 ↦ 𝑛𝛿(𝑛𝑥) (𝑛 ∈ ℕ).

Definition B.4 (Convolution). Let 𝑓, 𝑔 ∈ 𝐿2(ℝ). Then 𝑓 ∗ 𝑔∶ ℝ → ℂ is called the
convolution of 𝑓 and 𝑔 and is defined by

𝑓 ∗ 𝑔∶ 𝑥 ↦ ∫
ℝ

𝑓(𝑥 − 𝑦) · 𝑔(𝑦)𝑑𝑦
𝑧=𝑥−𝑦

= ∫
ℝ

𝑓(𝑧) · 𝑔(𝑥 − 𝑧) 𝑑𝑧

Lemma B.5. The convolution is well-defined and commutative.

Proof. With the notation from the definition, we see, that for every 𝑥 ∈ ℝ, 𝑥 ↦ 𝑓(𝑥 − 𝑦)
is in 𝐿2(ℝ) and therefore ⟨𝑥 ↦ 𝑓(𝑥 − 𝑦), 𝑔⟩ = (𝑓 ∗ 𝑔)(𝑥) ∈ ℝ. With the formula in the
definition, we see that 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓.

As noted after the Definition B.2, one might think of

lim
𝑛→∞

𝛿𝑛 as ∞𝜒{0} with ∫
ℝ

lim
𝑛→∞

𝛿𝑛(𝑥) 𝑑𝑥 = 1.

With that in mind, it sounds reasonable to hope that this calculation holds in some way:

𝑓 ∗ ( lim
𝑛→∞

𝛿𝑛) (𝑥) = ∫ 𝑓(𝑧) ( lim
𝑛→∞

𝛿𝑛) (𝑥 − 𝑧) 𝑑𝑧

= ∫ ({
0 𝑧 ≠ 𝑥
𝑓(𝑥)(lim𝑛→∞ 𝛿𝑛)(𝑥) 𝑧 = 𝑥

) 𝑑𝑧 = 𝑓(𝑥).

Of course such a function does not exist and therefore this not correct but it nevertheless
captures the idea to approximate 𝑓 by convoluting it with a Friedrichs mollifier. (To
make this precise one needs distribution theory which we will not go into detail here.)
This is helpful since 𝑓 ∗ 𝛿𝑛 is smooth.

Theorem B.6 (Convolution smoothes). Let 𝑓 ∈ 𝐿2(ℝ), 𝑔 ∈ 𝐶∞
𝑐 (ℝ). Then 𝑓∗𝑔 ∈ 𝐶∞(ℝ)

and (𝑓 ∗ 𝑔)(𝑛) = (𝑓 ∗ 𝑔(𝑛)) for every 𝑛 ∈ ℕ.

Proof. Let 𝑓 ∈ 𝐿2(ℝ), 𝑔 ∈ 𝐶∞
𝑐 (ℝ). Then (𝑓 ∗ 𝑔)(𝑥) = ∫

ℝ
𝑓(𝑧) · 𝑔(𝑥 − 𝑧) 𝑑𝑧 . Let 𝑥, ℎ ∈ ℝ,

|ℎ| < 1. Then

(𝑓 ∗ 𝑔)(𝑥 + ℎ) − (𝑓 ∗ 𝑔)(𝑥)
ℎ

=
∫
ℝ

𝑓(𝑧)𝑔(𝑥 + ℎ − 𝑧) 𝑑𝑧 − ∫
ℝ

𝑓(𝑧)𝑔(𝑥 − 𝑧) 𝑑𝑧
ℎ

= ∫
ℝ

𝑓(𝑧)𝑔(𝑥 + ℎ − 𝑧) − 𝑔(𝑥 − 𝑧)
ℎ

𝑑𝑧 .
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The function 𝑔 is continuously differentiable, hence 𝑔(𝑥+ℎ−𝑧)−𝑔(𝑥−𝑧)
ℎ → 𝑔′(𝑥−𝑧) for every

𝑧 ∈ ℝ. To apply the Lebesgue convergence theorem, there needs to exist a majorizing
function. By the mean value theorem there exists for every ℎ, 𝑧 ∈ ℝ an 𝜁ℎ,𝑧 between
𝑥 + ℎ − 𝑧 and 𝑥 − 𝑧 with 𝑔(𝑥+ℎ−𝑧)−𝑔(𝑥−𝑧)

ℎ = 𝑔′(𝜁ℎ,𝑧). The function 𝑔′ is bounded since it
is continuous on a compact domain, hence

∣𝑓(𝑧)𝑔(𝑥 + ℎ − 𝑧) − 𝑔(𝑥 − 𝑧)
ℎ

∣ ≤ ∣𝜒supp(𝑔)+[−1,1](𝑧)𝑓(𝑧)∣ sup
𝑦∈ℝ

|𝑔′(𝑦)|

and ∣𝜒supp(𝑔)+[−1,1]𝑓∣ sup
𝑦∈ℝ

|𝑔′(𝑦)| ∈ 𝐿1(ℝ)

since for a finite measure space Ω (here Ω = supp(𝑔) + [−1, 1]), it holds that 𝐿2(Ω) is a
subspace of 𝐿1(Ω). By the Lebesgue convergence theorem,

(𝑓 ∗ 𝑔)(𝑥 + ℎ) − (𝑓 ∗ 𝑔)(𝑥)
ℎ

→ ∫
ℝ

𝑓(𝑧)𝑔′(𝑥 − 𝑧) 𝑑𝑧 = (𝑓 ∗ 𝑔′)(𝑥).

By induction, the statement follows.

Remark. With the argumentation of the last proof, it also follows that the convolution
of two functions of which the smoother one has compact support is (at least) as smooth
as the smoother one.

Lemma B.7 (Support of the convolution). Let 𝑓, 𝑔 ∈ 𝐿2(ℝ), then supp(𝑓 ∗ 𝑔) ⊆
supp(𝑓) + supp(𝑔) ≔ {𝑥 + 𝑦 | 𝑥 ∈ supp(𝑓), 𝑦 ∈ supp(𝑔)}.

Proof. Let 𝑥 ∈ ℝ. If there is any 𝑧 ∈ ℝ with 𝑓(𝑧)𝑔(𝑥 − 𝑧) ≠ 0, then

𝑓(𝑧)𝑔(𝑥 − 𝑧) ≠ 0 ⟹ 𝑧 ∈ supp 𝑓 ∧ 𝑥 − 𝑧 ∈ supp 𝑔
⟺ 𝑧 ∈ supp 𝑓 ∧ 𝑥 ∈ 𝑧 + supp 𝑔
⟹ 𝑥 ∈ supp 𝑓 + supp 𝑔.

Therefore supp(𝑓 ∗ 𝑔) ⊆ supp 𝑓 + supp 𝑔 = supp 𝑓 + supp 𝑔.

To finish the proof of 𝐶∞
𝑐 (ℝ) being dense in 𝐿2(ℝ) we need one non-trivial fact which

will not be proven here and can be read in [1.26(2) Alt12, p. 64]. At [2.15 Alt12,
pp. 115 sqq.] one can also find a detailed proof and further reading material on dense
subsets of 𝐿𝑝.

Theorem B.8 (Continuous compactly supported functions dense in 𝐿2). 𝐶0
𝑐 (ℝ), the

subspace of continuous functions with compact support, is dense in 𝐿𝑝(ℝ) with 1 ≤ 𝑝 < ∞
with respect to the ‖·‖𝐿𝑝-norm.

Theorem B.9 (Approximation via convolution). Let (𝛿𝑛)𝑛∈ℕ be a Friedrichs mollifier,
𝑓 ∈ 𝐿2(ℝ). Then 𝑓 ∗ 𝛿𝑛 ∈ 𝐿2(ℝ) for every 𝑛 ∈ ℕ and

lim
𝑛→∞

‖𝑓 ∗ 𝛿𝑛 − 𝑓‖𝐿2(ℝ) = 0.
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Proof. Let (𝛿𝑛)𝑛∈ℕ, 𝑓 as in the theorem. Then

‖𝑓 ∗ 𝛿𝑛 − 𝑓‖2
𝐿2(ℝ) = ∫

ℝ
|(𝑓 ∗ 𝛿𝑛)(𝑥) − 𝑓(𝑥)|2 𝑑𝑥

= ∫
ℝ

∣∫
ℝ

𝑓(𝑧) · 𝛿𝑛(𝑥 − 𝑧) 𝑑𝑧 − 𝑓(𝑥) · 1∣
2

𝑑𝑥

(38)
= ∫

ℝ
∣∫

ℝ
𝑓(𝑧) · 𝛿𝑛(𝑥 − 𝑧) 𝑑𝑧 − 𝑓(𝑥) · ∫

ℝ
𝛿𝑛(𝑥 − 𝑧) 𝑑𝑧 ∣

2

𝑑𝑥

= ∫
ℝ

∣∫
ℝ
(𝑓(𝑧) − 𝑓(𝑥)) · 𝛿𝑛(𝑥 − 𝑧) 𝑑𝑧 ∣

2

𝑑𝑥

≤ ∫
ℝ

[∫
ℝ

|𝑓(𝑧) − 𝑓(𝑥)| · 𝛿𝑛(𝑥 − 𝑧) 𝑑𝑧 ]
2

𝑑𝑥

because of the triangle inequality. The Cauchy-Schwarz inequality for

for 𝑎 = |𝑓(·) − 𝑓(𝑥)| · 𝛿𝑛(𝑥 − ·) 1
2 and 𝑏 = 𝛿𝑛(𝑥 − ·) 1

2

yields the following. 𝑎 and 𝑏 are well-defined, since (36) 𝛿𝑛 ≥ 0.

‖𝑓 ∗ 𝛿𝑛 − 𝑓‖2
𝐿2(ℝ) ≤ ∫

ℝ
[(∫

ℝ
[|𝑓(𝑧) − 𝑓(𝑥)| · 𝛿𝑛(𝑥 − 𝑧) 1

2 ]
2

𝑑𝑧 )
1
2

(∫
ℝ

(𝛿𝑛(𝑥 − 𝑧) 1
2 )

2
𝑑𝑧 )

1
2

]
2

𝑑𝑥

(38),(36)
= ∫

ℝ
∫

ℝ
|𝑓(𝑧) − 𝑓(𝑥)|2 · 𝛿𝑛(𝑥 − 𝑧) 𝑑𝑧 · 12 𝑑𝑥

With the substitution 𝑡 = 𝑧 − 𝑥 we get

‖𝑓 ∗ 𝛿𝑛 − 𝑓‖2
𝐿2(ℝ) ≤ ∫

ℝ
∫

ℝ
|𝑓(𝑡 + 𝑥) − 𝑓(𝑥)|2 · 𝛿𝑛(−𝑡) 𝑑𝑡 𝑑𝑥

Fubini= ∫
ℝ

𝛿𝑛(−𝑡) ∫
ℝ

|𝑓(𝑡 + 𝑥) − 𝑓(𝑥)|2 𝑑𝑥 𝑑𝑡

(37)
= ∫

[− 1
𝑛 , 1

𝑛 ]
𝛿𝑛(−𝑡) ‖𝑓(𝑡 + ·) − 𝑓‖2

𝐿2(ℝ) 𝑑𝑡 .

The use of the Fubini’s Theorem is justified because the last integral is finite which will
be shown.

Now Theorem B.8 implies that there exists for any 𝜀 > 0 an 𝑓𝜀 ∈ 𝐶0
𝑐 (ℝ) such that

‖𝑓𝜀 − 𝑓‖𝐿2(ℝ) < 𝜀
3 . Since 𝑓𝜀 has compact support |supp(𝑓𝜀(𝑡 + ·) − 𝑓𝜀)| is bounded for

small 𝑡 and 𝑓𝜀 is uniformly continuous. Hence, we can find a 𝑡 ∈ ℝ \ {0} such that
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|supp(𝑓𝜀(𝑡 + ·) − 𝑓𝑘)|
1
2 ‖𝑓𝜀(𝑡 + ·) − 𝑓𝜀‖∞ < 𝜀

3 . Then

‖𝑓(𝑡 + ·) − 𝑓‖𝐿2(ℝ) ≤ ‖𝑓(𝑡 + ·) − 𝑓𝑘(𝑡 + ·)‖𝐿2(ℝ) + ‖𝑓𝑘(𝑡 + ·) − 𝑓𝑘‖𝐿2(ℝ) + ‖𝑓𝑘 − 𝑓‖𝐿2(ℝ)

≤ 2 ‖𝑓𝑘 − 𝑓‖𝐿2(ℝ)⏟⏟⏟⏟⏟⏟⏟
≤ 2𝜀

3

+ |supp(𝑓𝑘(𝑡 + ·) − 𝑓𝑘)|
1
2 ‖𝑓𝑘(𝑡 + ·) − 𝑓𝑘‖∞⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤ 𝜀
3

≤ 𝜀.

Hence ‖𝑓(𝑡 + ·) − 𝑓‖𝐿2(ℝ) → 0 as 𝑡 → ∞. Then we arrive at

‖𝑓 ∗ 𝛿𝑛 − 𝑓‖2
𝐿2(ℝ) ≤ ∫

[− 1
𝑛 , 1

𝑛 ]
𝛿𝑛(−𝑡) ‖𝑓(𝑡 + ·) − 𝑓‖2

𝐿2(ℝ) 𝑑𝑡

≤ ∫
[− 1

𝑛 , 1
𝑛 ]

𝛿𝑛(−𝑡) 𝑑𝑡 sup
|𝑡|≤ 1

𝑛

‖𝑓(𝑡 + ·) − 𝑓‖2
𝐿2(ℝ)

→ 1 · 0, 𝑛 → ∞

Theorem B.10 (Test functions dense in 𝐿2). 𝐶∞
𝑐 (ℝ) is dense in 𝐿2(ℝ).

Proof. Let 𝑓 ∈ 𝐿2(ℝ). We have shown that 𝑓 can be approximated by 𝑓 ∗ 𝛿𝑛 with a
𝛿-sequence (𝛿𝑛) but 𝑓 ∗ 𝛿𝑛 in general has no compact support. Therefore truncate 𝑓: Let
𝑓𝑘 ≔ 𝜒[−𝑘,𝑘]𝑓 for 𝑘 ∈ ℕ. Then for all 𝑥 ∈ ℝ, (𝜒ℝ\[−𝑘,𝑘] |𝑓|2) (𝑥) ↘ 0 and therefore by
monotone convergence with

∞ > ∫
ℝ

|𝑓|2 ≥ ∫
ℝ\[−𝑘,𝑘]

|𝑓|2 ≥ 0

⟹ ‖𝑓 − 𝑓𝑘‖𝐿2(ℝ) = ∫
ℝ\[−𝑘,𝑘]

|𝑓|2 → 0, 𝑘 → ∞

That means, that 𝑓𝑘 → 𝑓 in 𝐿2(ℝ). With Theorem B.6 and B.7 𝑓𝑘 ∗ 𝛿𝑛 ∈ 𝐶∞
𝑐 (ℝ) for all

𝑘, 𝑛 ∈ ℕ and 𝑓𝑘 ∗ 𝛿𝑛
𝑛→∞
→ 𝑓𝑘

𝑘→∞
→ 𝑓 in 𝐿2(ℝ). That is, what was to be shown.
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