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Abstract

The orientation of liquid crystal particles can be modelled with a unit vector field
(Frank–Oseen model) or a line field (constrained Landau–de Gennes model). Ball and
Zarnescu (2011) gave a criterion to decide if a line field on a Euclidean 2-dimensional
domain is orientable. A line field is called orientable if one of the two directions of
the lines in every point can be chosen without losing regularity. This thesis transfers
those results to manifolds. First, it is shown that all Sobolev 𝑊 1,𝑞 (𝑞 ≥ 2) line fields
on simply-connected manifolds of any dimension are orientable. Secondly, it is shown
that a Sobolev 𝑊 1,2 line field on an orientable surface is orientable if and only if it is
orientable on a set of loops that generate the fundamental group. Furthermore, an
analytical formulation of orientability on a loop on an orientable surface is given. As
necessary tools, different definitions of Sobolev vector and tensor fields are introduced
and shown to be equivalent.

Zusammenfassung

Die Ausrichtung von Flüssigkristallteilchen kann sowohl mit einem Einheitsvektorfeld
(Frank–Oseen-Modell) als auch mit einem Linienfeld (beschränktes Landau–de Gennes-
Modell) beschrieben werden. Ball und Zarnescu (2011) bewiesen ein Kriterium, um
zu entscheiden, ob ein Linienfeld auf einem Euklidischen 2-dimensionalen Gebiet
orientierbar ist. Ein Linienfeld heißt orientierbar, wenn eine der beiden Richtungen der
Linien in jedem Punkt ausgewählt werden kann, ohne Regularität zu verlieren. Diese
Masterarbeit überträgt diese Resultate auf Mannigfaltigkeiten. Es wird gezeigt, dass
𝑊 1,𝑞-Sobolevlinienfelder (𝑞 ≥ 2) auf einfach zusammenhängenden Mannigfaltigkeiten
jeder Dimension orientierbar sind. Zweitens ist ein 𝑊 1,2-Sobolevlinienfeld auf einer
orientierbaren Oberfläche genau dann orientierbar, wenn es auf einer Menge von
Schlaufen, welche die Fundamentalgruppe erzeugen, orientierbar ist. Außerdem wird
Orientierbarkeit auf einer Schlaufe auf einer orientierbaren Mannigfaltigkeit auch
analytisch formuliert. Verschiedene Definitionen von Sobolevvektor- und -tensorfeldern
auf Mannigfaltigkeiten werden als benötigte Werkzeuge eingeführt und ihre Äquivalenz
wird gezeigt.
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1 Introduction
1.1 Physical background of nematic liquid crystals

Figure 1: A microscopic image of a liquid crystal. We see the effect of double refraction.
The colors are caused by the local order of direction which changes with location
and time. Polarized light is shining through this plate while the camera has a
perpendicular polarization filter such that we only see colours where the liquid
crystal changes the polarization of the light. Image from Joshi et al. [Jos+19].

In 1888, the botanist Friedrich Reinitzer heated cholesterol extracted from carrots. At
room temperature it was solid, at 145 °C it looked milky and appeared to be between
solid and liquid. After further heating until 179 °C the cholesterol became a clear liquid.
The physicist and crystallographer Otto Lehmann then studied this phenomenon. He
explained the milkiness with double refraction in the cholesterol. [Che11, Ch. 5]

By this point double refraction was already well-known from solid crystals.

What are nematic uniaxial liquid crystals? Crystals are highly structured solid matter.
Namely the molecule position and orientation is ordered. This causes different refraction
indices depending on the polarity of the light. This effect can be seen in Figure 2.

Figure 2: Double refraction of a calcite crystal. The two images of a blue line come from
the two orthogonal polarities which are refracted by a different angle. Image
by APN MJM [APN11].

Lehmann saw the same effect in the heated cholesterol and deduced that this liquid
also had some internal structure. He therefore coined the term flüssiger Kristall, in
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English liquid crystal.
In a liquid crystal, the molecules locally are roughly aligned in the same direction.

In some liquid crystals, there is also a partial ordering in the position of the molecules.
Otherwise, they are positioned isotropically. Liquid crystals can move like a liquid but
are in many cases very viscous. [Dem+98, p. II.2]

Since Reinitzer’s discovery, it was found that many substances can be in a phase
between liquid and crystal. The different ways how they are structured are called
mesophases. ‘Meso’ means middle or in between. The ‘phase’ is the state that matter
can be in, usually solid, liquid or gaseous.

The nematic phase is the simplest and best-studied liquid crystal mesophase. The
word nematic comes from the Greek word nema, meaning thread. This refers to the lines
that are visible under the microscope as in Figure 1. In a nematic liquid crystal, the
position of the molecules is isotropic. That means that there is no structure in it. The
orientation of the molecules on the other hand is very similar to their neighbours. That
means that their orientation is locally structured.

What are examples of liquid crystals? Most liquid crystals are polymers. Polymers
are molecules that consist of many repeating, mostly carbon-based, parts. Hence it is
not surprising that a lot of current liquid crystal research is in biology and biophysics.

Liquid crystals exist not only in the lab as the aforementioned carrot cholesterol but
also occur naturally. Indeed, mucus on the skin of slugs is a liquid crystal. The molecules
are proteins called mucin. The liquid crystal structure holds the mucus together and is
responsible the slimy feeling. Since it is also able to adapt, it protects the slug against
sharp edges of sand or rocks. The article [McQ16] describes how the same principle
applies to giraffe saliva that protects their tongue against thorns.

For applications in technology researchers try to understand how organic molecules
like proteins or polysaccharides assemble and form hierachical structures. One example
is the work of Joshi et al. [Jos+21] who study nature-derived polysaccharides. They
evaporate the water from an aqueous liquid crystalline solution and the polysaccharide
units self-assemble and thus create a thin membrane upon dehydration. This resulting
liquid crystal is uniaxial. This differs from the cholesterol mentioned at the beginning
which becomes a liquid crystal at the certain temperature. By using rods and disc-shaped
liquid crystal units in combination, the created membrane is bridging 8 mm instead of
1 mm with just rod-shaped liquid crystal units.

Another instance of liquid crystals that are formed by self-assembly was found by
Morales-Navarrete et al. [Mor+19] in liver tissue. These researchers were surprised to
find a long-range liquid crystal order where the constituents were not molecules but cells.

We see from those very different examples that the term ‘liquid crystal’ describes a
diverse set of substances. That makes this mesophase so interesting and worthy of study.

1.2 Models for liquid crystals

How do we model liquid crystals? The molecule orientation can be described with
a single direction per point in case of uniaxial liquid crystals. In case of biaxial liquid
crystals, we need two orthogonal directions as in Figure 3c. In this thesis, only uniaxial
cases are considered. A direction is modelled with a vector of length 1, called the director.
Figure 3 illustrates the meaning of the director for different shapes of molecules. In many
uniaxial cases the molecules are rods that are much longer in one dimension than in
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the other two. Then, the director points from one end to the other end of the rod as
in Figure 3a. In other cases the molecules are disc-shaped as in Figure 3b. Then, the
director is orthogonal to the disc. In most liquid crystals, the molecules are not perfectly

�⃗�

(a) The director for rod-
shaped molecules

�⃗�

(b) The director for disc-
shaped molecules

⃗𝑛1

⃗𝑛2

(c) The two directors for
banana-shaped mole-
cules, examples of bi-
axial molecules

Figure 3: Three examples of how directors model the orientation of a molecule

aligned. This is illustrated in Figure 4. Therefore, the director at one point models
not the direction of a single molecule but the average of the directions of the molecules
around that point.

Figure 4: Average orientation of molecules in a nematic liquid crystal. From [Maj18, p. 3]

How do we model liquid crystals globally? When we take the directors in all points
together, we have a unit vector field, called the director field. A field is just a vector-valued
function. This is the earliest model for liquid crystals [Fra58]. It is named after Carl
Wilhelm Oseen who developed it in 1933 and Frederick Charles Frank who refined it in
1958. The model further describes how to calculate how the molecules are oriented: The
director field minimizes the ‘Frank–Oseen energy’.

The Frank–Oseen model is simple but has shortcomings. These were addressed in
1974 by de Gennes [dGen74]. He formulated another model of so-called 𝑄-tensors. It
is based on the solid-liquid phase transition theory of Lev Landau [Che11, p. 162] and
is therefore called Landau–de Gennes model. We address only one of the shortcomings,
namely the missing head-tail symmetry. Molecules in nematic liquid crystals are head-tail
symmetric, so a unit vector 𝑛 models the same direction as −𝑛. Therefore it is more
appropriate to use a line field instead of a unit vector field. A line field is a special case
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of a 𝑄-tensor field. Figure 5a illustrates how we can picture a line field on a flat domain.
Mathematically the codomain of a line field is the real projective space.

We call a line field orientable if we can choose in every point one of the two unit vectors
that represent the line. Additionally, the resulting unit vector field has to be continuous if
the line field is continuous or weakly differentiable if the line field is weakly differentiable.
Figure 5 shows an example of a continuous line field that is not orientable as explained
in the caption. Since unit vector fields are easier to handle than maps into a projective
space the question is:

Is a given line field orientable? (1)

(a) A continuous line field. (b) If the director is continu-
ous above the hole, it has
to turn around and is
discontinuous below the
hole.

(c) If the director is continu-
ous below the hole, the
vector field is discontinu-
ous above the hole.

Figure 5: An unorientable line field on a domain with one hole and two failed attempts
to find an orientation. Both are discontinuous where the line field is continuous.
From [Fig. 1 BZ11]

How can we predict the behaviour of a liquid crystal? Physical models do not only
describe observations but also predict how a system behaves under given parameters.
In the case of liquid crystals, these parameters include the shape and topology of the
domain, boundary values, electrical or magnetic fields, the temperature and pressure.
They are modeled with the Frank–Oseen energy, a functional on the space of line or
director fields. The orientations of the molecules then minimize this energy and thus, the
mathematical formulation is a minimization problem in a class of unit vector fields or
line fields.

8



The question that arises is:

Is the line field energy minimizer orientable? (2)

If for a specific problem the answer is ‘yes’ and this is shown without calculating the
minimizer, the minimization problem can be solved in the class of unit vector fields. An
orientability criterion, i. e. an answer to Question 1, is obviously an important tool for
answering this question.

Minimization problems are usually not solved in the class of continuous functions
though, but in the class of weakly differentiable (Sobolev) functions. Therefore, Question
1 also needs to be answered for Sobolev line fields.

1.3 Previous results and content of this thesis
What has been shown before? Ball and Zarnescu [BZ11] showed that on simply-
connected two- and three-dimensional flat domains for 𝑞 ≥ 2, all weakly differentiable
𝑊 1,𝑞 line fields are orientable [Thm. 2 BZ11]. For two-dimensional flat domains with
holes, they showed that orientability of a 𝑊 1,2 line field is equivalent to orientability on
the boundaries of the holes [Prop. 7 BZ11]. Furthermore, they characterised orientability
on a hole boundary with the winding number of an auxiliary unit vector valued map.
Intuitively spoken, this auxiliary map turns twice as fast as the line field and if its winding
number is even, the line field is orientable.

How does this thesis generalise? Some applications like [Keb+14] study thin films
of liquid crystals which are best modeled as two-dimensional surfaces. Therefore, this
thesis generalises the results of [BZ11] to curved surfaces. In order to stay as general
as possible, we also consider manifolds of dimension higher than 2. On manifolds, the
directions need to be tangent to the manifold and the tangent spaces at different points
are distinct. Therefore, we need to adapt the definitions of unit vector fields, line fields
and Sobolev spaces. As mentioned before, line fields are a special case of 𝑄-tensor fields.
This allows us to view line fields as tensor fields and thus, we can define what it means
for a unit vector field or line fields to be tangent to the domain manifold. The 𝑄-tensor
model and the tensor notation are introduced in Section 2.

Then in Section 3, we define Sobolev spaces of tangent tensor fields. Proper discussion
of Sobolev tangent tensor fields is surprisingly rare in the literature, probably because
properties of Sobolev spaces for Euclidean domains can widely be transferred. Neverthe-
less, we need to take care because there exist several possible definitions. In Section 3.1,
we define them intrinsically. The other two subsections define them differently and show
that those definitions are equivalent to the intrinsic definition.

Why is the hole in the domain important? In the example in Figure 5, we already
see that the hole in the domain plays a crucial role. Without it, every continuous line
field is orientable. More generally, only the topology of the domain determines how we
can check if a continuous line field is orientable. This follows from an algebraic topology
result about liftings and will be discussed in Section 4. The idea is that the sphere in
which the unit vector fields map is a double covering of the real projective space in which
the line fields map. The theorem implies that we can check orientability of a line field
by checking orientability on a set of loops that generate the fundamental group of the
domain. The theorem is called the ‘lifting lemma’.
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How can we transfer the orientability criterion to weakly differentiable fields? The
obvious way to generalise the orientability criterion from continuous to Sobolev fields is
to approximate Sobolev fields by continuous fields. This is not possible, however, in the
general case for manifold-valued functions. Our codomains are the sphere and the real
projective space which are not vector spaces but manifolds. However, in two cases, we
have sufficient density results: simply connected domains and surfaces. Surface is just a
different name for a two-dimensional manifold.

How do we show the orientability criterion on simply connected domains? In the
case of simply connected domains, it was shown that all Sobolev functions can be weakly
approximated by smooth functions [PR03]. As explained in Note 5.3, the only way
to use this theorem is to have a common codomain for all points of the domain. We
combine all tangent spaces by embedding the domain into a Euclidean space. The tangent
vectors are then also elements of a common Euclidean space and the Sobolev definition
for ℝ𝑁-valued functions can be used. Section 3.2 discusses this definition of Sobolev
functions and shows that it is equivalent with the intrinsic definition even though the
norm is unequal. The smooth weak approximations that the density result give are then
line fields in the surrounding space, not necessarily tangent. Fortunately the continuous
orientability result holds for those as well. The last bit to the proof that all Sobolev line
fields on simply-connected manifold domains are orientable (Theorem 5.4) is the stability
of orientability under weak convergence (Proposition 5.2).

How do we show the orientability criterion on surfaces? The other main result
considers surfaces. We show that we can check if a Sobolev 𝑊 1,2 line fields is orientable
by checking it on any set of loops that generate the fundamental group of the domain.
In other words, on surfaces the criterion for continuous line fields also applies to Sobolev
line fields.

It turns out that all orientable surfaces either have no unit vector fields or have a
trivial tangent bundle, i. e., there exists a global frame. Since line fields obviously cannot
be orientable if there exist no unit vector field, we only have to consider the other case of
surfaces with trivial tangent bundle. This frame allows us to identify all tangent spaces
and therefore consider vector and line fields as maps into ℝ2. The Sobolev function
definition that this identification induces is discussed in Section 3.3, where we also show
that this definition is also equivalent to the intrinsic one. The rest of the argument
resembles the proof from Section 4 in [BZ11]:

The easier direction from orientability on the surface to orientability on loops is based
on the trace theorem that shows that the restriction to a loop is a continuous operator
between Sobolev spaces. In the other direction, we have to show that the approximations
are orientable on the loops if the approximated Sobolev field is orientable on the loops.
For this, we use the winding number which is an integer. The winding number says
how often a circle valued function on a loop wraps around the circle and is originally
defined in algebraic topology for continuous functions. It got generalised for fractional
𝑊 1/2,2 Sobolev functions, which is the suitable trace space of the line fields on surfaces
[dMGP91]. To use it for line fields, we notice that on surfaces, the lines are modeled with
the real projective line which is homeomorphic to the circle. As such it also has a winding
number which is even exactly for orientable line fields. In contrast to higher dimensions,
on surfaces, smooth unit vector valued functions are dense in the Sobolev space of unit
vector valued functions with respect to the norm. Since the winding number is an integer
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and is continuous as a functional on the suitable Sobolev trace space, approximations
that are close enough in the norm sense have the same winding number and are thus
orientable on loops as well. At this point, the orientability criterion for continuous line
fields is used and the limit is an orientation of the approximated line field.

What can we say about Question 2? The two orientability criteria answer the Question 1
for Sobolev line fields in special cases. As the next step, Ball and Zarnescu [BZ11] present
a condition on a flat two-dimensional domain with holes for orientability of the energy
minimizer of the harmonic energy 𝐸(𝑄) = ∫ |∇𝑄| d𝑥. The harmonic energy is a special
case of the Frank–Oseen energy. Unfortunately, this result relies heavily on another work
[BBH94] that reduces the minimization problem to a scalar problem and shows that a
minimizer exists. This work specialises on flat two-dimensional domains with holes and
extending it is far beyond the scope of this thesis. In Section 6, we show however that
there exist a condition on the torus similar to a boundary condition for which the line
field minimizer of the harmonic energy is not orientable. Therefore, the question of how
to check if harmonic energy minimizers on surfaces are orientable remains open.

2 Landau–de Gennes model on manifolds
The Frank–Oseen and Landau–de Gennes model use vector-valued and matrix-valued
fields when they are used on Euclidean domains. Since we will use these models on
manifolds, we need to define what it means for those fields to be tangent to the manifold.
The goal of this section is to introduce the 𝑄-tensor model and how it specialises to the
line fields and unit vector fields that we study in this thesis.

Throughout the thesis, let 𝑀 be a smooth Riemannian manifold with or without
boundary. Let 𝑔 be the metric on 𝑀 and 𝑚 ∶= dim 𝑀.

2.1 Tensor notation
In accordance to Lee [Lee18] we denote the space of tensors relative to a vector space 𝑉
that take 𝑘 covectors and 𝑙 vectors as arguments as 𝑇 (𝑘,𝑙)𝑉. In particular a (1, 0)-tensor
is a (contravariant) vector, a (0, 1) tensor is a covector, a (𝑘, 0)-tensor is a contravariant
tensor and a (0, 𝑙)-tensor is a covariant tensor.

In this terminology, the metric 𝑔 is a (0, 2)-tensor in every point 𝑝 ∈ 𝑀.
Given a basis (𝐸1, …, 𝐸𝑑) of a vector space 𝑉, any 𝑄 ∈ 𝑇 (2,0)𝑉 can be written in

Einstein summation convention as

𝑄 = 𝑄𝑖𝑗𝐸𝑖 ⊗ 𝐸𝑗 .

Also in accordance to [Lee18], the trace of a tensor is first defined for (1, 1)-tensors
in the same way as for vector space endomorphisms since for 𝑡 ∈ 𝑇 (1,1)𝑉, we get after
plugging in a 𝑣 ∈ 𝑉 the map 𝑡(𝑣, ·) ∈ 𝑉 ∗∗ ≅ 𝑉. This shows that 𝑡 is an endomorphism of
𝑉. From linear algebra, we know that tr(𝑡) is then defined as the sum of the diagonal
entries of any representing matrix and that this value does not depend on the choice of
the basis. For 𝑄 ∈ 𝑇 (2,0), we first have to lower one index. Here, (𝜀1, …, 𝜀𝑑) is the dual
basis to (𝐸1, …, 𝐸𝑑). Then

tr(𝑄) = tr(𝑄𝑖𝑗𝐸𝑖 ⊗ 𝐸𝑗) = tr(𝑔𝑖𝑘𝑄𝑖𝑗𝜀𝑘 ⊗ 𝐸𝑗) = 𝑔𝑖𝑗𝑄𝑖𝑗,

which is the usual trace if the chosen basis is orthonormal.
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2.2 𝑄-tensors
The Landau–de Gennes model describes the orientation of the rod-like molecules with a
probability measure 𝜇 in every point. You can also think of this measure in a point as
the distribution of molecule orientations very close to this point. We write

𝜇(𝑝, ·) ∶ ℒ(𝕊𝑝𝑀) → [0, 1]

with the space of unit vectors 𝕊𝑝𝑀 ∶= {𝑣 ∈ 𝑇𝑝𝑀 | |𝑣|𝑔 = 1} and the set of Lebesgue
measurable subsets ℒ(𝕊𝑝𝑀). In every point 𝑝 ∈ 𝑀, we have 𝜇(𝑝, 𝕊𝑝𝑀) = 1 since 𝜇(𝑝, ·)
is a probability measure. 𝜇(𝑝, 𝑆) gives the probability of a molecule at 𝑝 pointing in a
direction in 𝑆 ⊆ 𝕊𝑝𝑀.

As mentioned in the introduction, the molecules are head-tail symmetric. This is
modelled with the assumption that 𝜇(𝑝, −𝑆) = 𝜇(𝑝, 𝑆) for all 𝑝 ∈ 𝑀 and measurable
𝑆 ⊆ 𝕊𝑝𝑀. Here, −𝑆 = {−𝑥 | 𝑥 ∈ 𝑆}. That implies that the expected value in a point
𝑝 ∈ 𝑀 vanishes:

∫
𝕊𝑝𝑀

𝑣 d𝜇(𝑣) = 1
2

(∫
𝕊𝑝𝑀

𝑣 d𝜇(𝑣) + ∫
𝕊𝑝𝑀

−𝑣 d𝜇(−𝑣)) = 0 .

To describe a probability distribution, the next term to consider is the tensor of second
moments:

𝜇2(𝑝) ∶= ∫
𝕊𝑝𝑀

𝑣 ⊗ 𝑣 d𝜇(𝑣) .

From this definition it is clear that 𝜇2 is symmetric.
For calculating the trace of 𝜇2(𝑝), choose an orthonormal basis (𝐸1, …, 𝐸𝑑) of 𝑇𝑝𝑀.

Then

tr (𝜇2(𝑝)) = tr((𝜇2)𝑖𝑗𝐸𝑖 ⊗ 𝐸𝑗) =
𝑚

∑
𝑖=1

𝜇𝑖𝑖
2 =

𝑚
∑
𝑖=1

∫
𝕊𝑝𝑀

(𝑣𝑖)2 d𝜇(𝑣)

= ∫
𝕊𝑝𝑀

𝑚
∑
𝑖=1

(𝑣𝑖)2 d𝜇(𝑣) = ∫
𝕊𝑝𝑀

1 d𝜇(𝑣) = 1 .

In a normal liquid, the molecule orientations are isotropically distributed. Since we want
to measure the alignment of the molecules, we consider the difference to the isotropic
distribution. The second moment tensor 𝜇iso of the isotropic distribution is given by

𝜇iso = 1
4𝜋

∫
𝕊𝑝𝑀

𝑣 ⊗ 𝑣 d𝐴(𝑣) = 1
𝑚

𝑚
∑
𝑖=1

𝐸𝑖 ⊗ 𝐸𝑖 = 1
𝑚

𝑔♯♯

since 1
4𝜋

∫
𝕊𝑝𝑀

𝑣𝑖𝑣𝑗𝐸𝑖 ⊗ 𝐸𝑗 d𝐴(𝑣) = 1
4𝜋

∫
{𝑣∈𝕊𝑝𝑀 | 𝑣𝑖≥0}

𝑣𝑖𝑣𝑗𝐸𝑖 ⊗ 𝐸𝑗 d𝐴(𝑣)

+ 1
4𝜋

∫
{𝑣∈𝕊𝑝𝑀 | 𝑣𝑖<0}

𝑣𝑖𝑣𝑗𝐸𝑖 ⊗ 𝐸𝑗 d𝐴(𝑣)

= 1
4𝜋

∫
{𝑣∈𝕊𝑝𝑀 | 𝑣𝑖≥0}

(𝑣𝑖𝑣𝑗 + (−𝑣𝑖)𝑣𝑗) 𝐸𝑖 ⊗ 𝐸𝑗 d𝐴(𝑣)

= 0 for 𝑖 ≠ 𝑗
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and 1
4𝜋

∫
𝕊𝑝𝑀

(𝑣𝑖)2𝐸𝑖 ⊗ 𝐸𝑖 d𝐴(𝑣) = 1
4𝜋

( 1
𝑚

∫
𝕊𝑝𝑀

𝑚
∑
𝑘=1

(𝑣𝑘)2

⏟
=|𝑣|2=1

d𝐴(𝑣))𝐸𝑖 ⊗ 𝐸𝑖

= 1
4𝜋

· 1
𝑚

∣𝕊𝑝𝑀∣ 𝐸𝑖 ⊗ 𝐸𝑖

= 1
𝑚

𝐸𝑖 ⊗ 𝐸𝑖 .

As usual 𝑔♯♯ = ∑𝑚
𝑖=1 𝐸𝑖 ⊗ 𝐸𝑖 is the metric with twice raised indices, hence a (2, 0)-tensor.

We call for any point 𝑝 on 𝑀

𝑄𝑝 ∶= 𝜇2 − 𝜇iso = ∫
𝕊𝑝𝑀

𝑣 ⊗ 𝑣 − 1
𝑚

𝑔♯♯ d𝜇(𝑣) (3)

a 𝑄-tensor. 𝑄-tensors are symmetric and trace-free as shown above.

Definition 2.1 (𝑄-tensor bundle). The tensor bundle of 𝑄-tensors is defined as

𝒬𝑀 ∶= {𝑄 ∈ 𝑇 (2,0)𝑇 𝑀 ∣ 𝑄𝑇 = 𝑄 and tr 𝑄 = 0}
with the fiber 𝒬𝑝𝑀 ∶= {𝑄 ∈ 𝑇 (2,0)𝑇𝑝𝑀 ∣ 𝑄𝑇 = 𝑄 and tr 𝑄 = 0} at any 𝑝 ∈ 𝑀 . ◀

For a more thorough introduction to 𝑄-tensor theory see, [MN14].
Most research considers 𝑄-tensors in Euclidean space. Then, 𝑄𝑝 is a matrix without

specification if it is a (2, 0)-, (1, 1)- or (0, 2)-tensor. Since we consider a Riemannian
manifold, the metric induces the linear isometric musical isomorphisms that raise and
lower indices. Therefore both co- and contravariant tensors can be interpreted to describe
the molecule alignment. The paper [NRV20] treats liquid crystals on surfaces and uses a
contravariant 𝑄-tensor field. In another paper [Nit+18], the same working group uses a
covariant 𝑄-tensor field though. Therefore, there is no agreement in the literature. Since
the director field is modelling a direction, the obvious choice is a contravariant vector
and thus, the obvious choice for second moment tensor is contravariant as well.

2.3 The constrained Landau–de Gennes model

In order to model line fields in the 𝑄-tensor theory, consider the spectral representation
of a symmetric trace-free 𝑄𝑝 ∈ 𝒬𝑝𝑀 (𝑝 ∈ 𝑀)

𝑄𝑝 = 𝜆𝑖𝐸𝑖 ⊗ 𝐸𝑖 with 𝜆𝑚 = −
𝑚−1
∑
𝑖=1

𝜆𝑖 and 𝐸𝑖 an orthonormal basis.

If the eigenvalues 𝜆1, …, 𝜆𝑚−1 are equal, we call the state uniaxial and we can write

𝑄𝑝 = 𝜆1𝑔♯♯ − 𝑚𝜆1𝐸𝑚 ⊗ 𝐸𝑚 = −𝑚𝜆1 (𝐸𝑚 ⊗ 𝐸𝑚 − 1
𝑚

𝑔♯♯) .

We call 𝑠 ∶= −𝑚𝜆1 the order parameter and 𝑛𝑝 = 𝐸𝑚 the director, so that

𝑄𝑝 = 𝑠 (𝑛𝑝 ⊗ 𝑛𝑝 − 1
𝑚

𝑔♯♯) . (4)
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In order to understand this term order parameter, consider the expected value of the
following term. Here, 𝜃 is the angle between the direction of a molecule 𝑣 and the director
𝑛:

⟨(cos 𝜃)2 − 1
𝑚

d𝜇(𝑣)⟩ = ∫
𝕊𝑝𝑀

⟨𝑣, 𝑛⟩2
𝑔 − 1

𝑚
d𝜇(𝑣)

= ∫
𝕊𝑝𝑀

⟨𝑣 ⊗ 𝑣, − 1
𝑚

𝑔♯♯, 𝑛 ⊗ 𝑛⟩
𝑔

d𝜇(𝑣)

(3)
= ⟨𝑄, 𝑛 ⊗ 𝑛⟩𝑔 = 𝑚 − 1

𝑚
𝑠 .

⟹ 𝑠 = 𝑚
𝑚 − 1

⟨(cos 𝜃)2 − 1
𝑚

⟩ ∈ [− 1
𝑚 − 1

, 1] .

The lower bound 𝑠 = − 1
𝑚−1 means that all molecules are perpendicular to 𝑛, 𝑠 = 0

means that the liquid is isotropic and 𝑠 = 1 means that all molecules are perfectly aligned
with 𝑛. According to [MN14, p. 3], a typical liquid crystal has 𝑠 = 0.6 (here 𝑚 = 3.)
Remark 2.2 (Constant order parameter). Throughout the thesis we assume the order
parameter 𝑠 ∈ [− 1

𝑚−1 , 1] \ {0} to be a constant. Of course, this is a significant restriction
but still covers a range of use cases with homogeneous conditions like constant temperature,
pressure and water content. Furthermore, studying the models with constant order
parameter can prepare research for more complex models.

While we only consider the case of uniaxial nematic crystals with constant order para-
meter 𝑠 we see that the 𝑄-tensor model in the general form fixes two other shortcomings
of the Frank–Oseen model. For once, the director field does take into account how much
the molecules vary around the direction given by the director. This is also related to the
fact that liquid crystals are in some cases forced to have ‘defects’ where no director can
be properly defined. That can be modeled with 𝑠 = 0. Secondly, the Frank–Oseen model
assumes that nematic liquid crystals are uniaxial but biaxial examples were also found.
Note that we are considering any number of dimensions 𝑚 ∈ ℕ but since we live in three
dimensions, the maximum of independent eigenvalues of 𝑄 can be 2, so there cannot be
triaxial nematic liquid crystals.

Definition 2.3 (Constrained 𝑄-tensors). We introduce the following fiber bundles over 𝑀.
Let 𝑝 ∈ 𝑀. The unit vector bundle is denoted by

𝕊𝑀 ∶= {𝑛 ∈ 𝑇 𝑀 ∣ |𝑛|𝑔 = 1} ⊂ 𝑇 𝑀

with the fiber

𝕊𝑝𝑀 ∶= {𝑛 ∈ 𝑇𝑝𝑀 ∣ |𝑛|𝑔 = 1} ⊂ 𝑇𝑝𝑀 as before.

The constrained 𝑄-tensor bundle is denoted by

𝒬𝕊𝑀 ∶= {𝑠 (𝑛 ⊗ 𝑛 − 1
𝑚

𝑔♯♯) ∣ 𝑛 ∈ 𝕊𝑀} ⊂ 𝒬𝑀

with the fiber

𝒬𝕊
𝑝𝑀 ∶= {𝑠 (𝑛 ⊗ 𝑛 − 1

𝑚
𝑔♯♯) ∣ 𝑛 ∈ 𝕊𝑝𝑀} ⊂ 𝒬𝑝𝑀 . ◀
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Connected to those definitions is the projection operator.

Definition 2.4 (Projection operator). The mapping from a direction to a constrained
𝑄-tensor is called the projection operator.

𝑃∶ 𝕊𝑀 → 𝒬𝕊𝑀

𝑃(𝑛) ∶= 𝑠 (𝑛 ⊗ 𝑛 − 1
𝑚

𝑔♯♯)

By abuse of notation, we also call 𝑃 ∘ · just 𝑃:

𝑃∶ Γ𝑅(𝕊𝑀) → Γ𝑅′(𝒬𝕊𝑀)

(𝑃(𝑛))𝑝 ∶= 𝑠 (𝑛𝑝 ⊗ 𝑛𝑝 − 1
𝑚

𝑔♯♯
𝑝 ) (𝑝 ∈ 𝑀)

Here, 𝑅 and 𝑅′ are a regularity classes like 𝐶 for continuous, 𝐶∞ for smooth, 𝑊 ∇,𝑞 for
Sobolev or 𝑊 1

2 ,2 for fractional Sobolev. ◀

We will see that in our cases the line field 𝑃(𝑛) will be as regular as the unit vector
field 𝑛: 𝑅 = 𝑅′.
Remark 2.5 (Line fields). We see that 𝑃(−𝑛) = 𝑃(𝑛) since (−𝑛) ⊗ (−𝑛) = (−1)2𝑛 ⊗ 𝑛.
As the introduction explains, the identification of two opposite unit vectors defines a line.
Therefore, we will call the constrained 𝑄-tensor fields Γ𝑅(𝒬𝕊𝑀) line fields.

Definition 2.6 (Orientable line field). A line field 𝑄 ∈ Γ𝑅(𝒬𝕊𝑀) is called orientable if
there exists 𝑛 ∈ Γ𝑅(𝕊𝑀) such that 𝑃(𝑛) = 𝑄. In this case 𝑛 is called an orientation
of 𝑄. Here 𝑅 is a regularity class as in Definition 2.4. ◀

3 Sobolev spaces
In the introduction, we have discussed that the minimization problems are solved in
Sobolev spaces instead of spaces of continuous fields. This section presents how Sobolev
spaces of vector and line fields can be defined. The first Section 3.1 defines them and the
norms on the Sobolev spaces intrinsically. The other two subsections use an embedding
and a global frame to define the Sobolev spaces and show that these definitions are
equivalent to the intrinsic one. We use those non-intrinsic views on Sobolev spaces in the
proofs in Section 5.

3.1 Sobolev tensor fields
This section defines weakly differentiable tensor fields on manifolds intrinsically. It is
based on the definitions of Güneysu [Chapter I and III Gün17] but specialises to our
cases of the covariant derivative ∇ on 𝑇 𝑀, and 𝑇 (2,0)𝑀.

In the Euclidean case Sobolev spaces are defined such that all weak derivatives are in
𝐿𝑞. By summing up the 𝐿𝑞-norms of all derivatives we get the norm on those Sobolev
spaces. It is possible to list ‘all weak derivatives’ by listing the partial derivatives in
the coordinate directions. In the manifold setting this norm would depend on the local
choice of coordinates to define the partial derivatives. Hence it would not be intrinsic.
Therefore we define Sobolev spaces with respect to a partial differential operator. In the
general case of [Gün17] several operators of arbitrary order can be combined to define a
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Sobolev space. Here we only need ∇. Note that ∇ denotes different operators as seen in
Example 3.2, depending on the rank of the tensors it operates on.

Throughout this section 𝐸 and 𝐹 are smooth metric vector bundles over the Riemannian
compact manifold 𝑀. In our cases of interest 𝐸 will be 𝑇 𝑀 or 𝑇 (2,0)𝑇 𝑀 and 𝐹 = 𝐸⊗𝑇 ∗𝑀.

Definition 3.1 (First-order partial differential operator). An ℝ-linear map

𝐷∶ Γ𝐶∞(𝐸) → Γ𝐶∞(𝐹)

is called a first-order smooth partial differential operator if for any chart ((𝑥1, … , 𝑥𝑚), 𝑈)
of 𝑀 which admits frames (𝑒1, … , 𝑒𝑠 ∈ Γ𝐶∞(𝐸|𝑈), 𝑓1, … , 𝑓𝑡 ∈ Γ𝐶∞(𝐹|𝑈), there are
(necessarily uniquely determined) smooth functions

𝐷𝛼 ∶ 𝑈 → ℝ𝑠×𝑡 (matrices)

where 𝛼 ∈ {0, 1, ..., 𝑚}such that for all (𝜑(1), … , 𝜑(𝑠)) ∈ 𝐶∞(𝑈, ℝ𝑠) we have

𝐷|𝑈 (𝜑(𝑖)𝑒𝑖) = (𝐷0)𝑗
𝑖𝜑

(𝑖)𝑓𝑗 + (𝐷𝛼)𝑗
𝑖
𝜕𝜑(𝑖)

𝜕𝑥𝛼 𝑓𝑗 in 𝑈 .

We call the set of smooth first-order partial differential operators 𝒟(𝐸, 𝐹). ◀

One well-known example of a partial differential operator is the exterior derivative, as
discussed in Example I.5 of [Gün17]. In this thesis we consider connections.
Example 3.2 (Connection). Consider a connection ∇ with connection coefficients Γ𝑘

𝑖𝑘
with respect to a local frame ( 𝜕

𝜕𝑥𝑖 ) with dual coframe (d𝑥𝑖). On a chart domain 𝑈 ⊆ 𝑀
with coordinates 𝑥 the definition of ∇ then reads

𝐸 = 𝑇 𝑀, 𝐹 = 𝑇 (1,1)𝑇 𝑀, 𝑋 ∈ Γ𝐶∞(𝑇 𝑀) ∶

∇|𝑈 𝑋𝑖 𝜕
𝜕𝑥𝑖 = (Γ𝑗

𝑘𝑖𝑋𝑖 + 𝜕𝑋𝑗

𝜕𝑥𝑘 ) 𝜕
𝜕𝑥𝑗 ⊗ d𝑥𝑘 .

With the notation of Definition 3.1 this is

𝑒𝑖 = 𝜕
𝜕𝑥𝑖 , 𝑓𝑗𝑘 = 𝜕

𝜕𝑥𝑗 ⊗ d𝑥𝑘,

(𝐷0)𝑗𝑘
𝑖 = Γ𝑗

𝑘𝑖, (𝐷𝛼)𝑗𝑘
𝑖 = 𝛿𝛼𝑘𝛿𝑗

𝑖 .

For (2, 0) tensors ∇ reads in local coordinates

𝐸 = 𝑇 (2,0)𝑇 𝑀, 𝐹 = 𝑇 (2,1)𝑇 𝑀, 𝑌 ∈ Γ𝐶∞(𝐸) ∶

∇|𝑈 𝑌 𝑖𝑗 𝜕
𝜕𝑥𝑖 ⊗ 𝜕

𝜕𝑥𝑗 = (Γ𝑘
𝑚𝑖𝑌 𝑖𝑙 + Γ𝑙

𝑚𝑗𝑌 𝑘𝑗 + 𝜕𝑌 𝑘𝑙

𝜕𝑥𝑚 ) 𝜕
𝜕𝑥𝑘 ⊗ 𝜕

𝜕𝑥𝑙 ⊗ d𝑥𝑚 .

With the notation of Definition 3.1 this is

𝑒𝑖𝑗 = 𝜕
𝜕𝑥𝑖 ⊗ 𝜕

𝜕𝑥𝑗 , 𝑓𝑘𝑙𝑚 = 𝜕
𝜕𝑥𝑘 ⊗ 𝜕

𝜕𝑥𝑙 ⊗ d𝑥𝑚,

(𝐷0)𝑘𝑙𝑚
𝑖𝑗 = Γ𝑘

𝑚𝑖𝛿𝑙
𝑗 + Γ𝑙

𝑚𝑗𝛿𝑘
𝑖 , (𝐷𝛼)𝑘𝑙𝑚

𝑖𝑗 = 𝛿𝛼
𝑚𝛿𝑘

𝑖 𝛿𝑙
𝑗

To define weak derivatives analogously to the Euclidean case we need the definition of
the adjoint differential operator.
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Definition 3.3 (Formal adjoint). For any 𝐷 ∈ 𝒟(𝐸, 𝐹), there exists a unique 𝐷∗ ∈
𝒟(𝐹 , 𝐸) that satisfies

∫
𝑀

⟨𝐷∗𝜓, 𝜙⟩𝑔 d𝑉𝑔 = ∫
𝑀

⟨𝜓, 𝐷𝜙⟩𝑔 d𝑉𝑔

for all 𝜓 ∈ Γ𝐶∞(𝐹) and 𝜙 ∈ Γ𝐶∞(𝐸) with at least one of 𝜓 and 𝜙 compactly supported.
Here 𝑔 denotes the metrics both on 𝐸 and 𝐹. The operator 𝐷∗ is called the formal adjoint
of 𝐷 with respect to the metric 𝑔. ◀

Güneysu [Proposition and definition I.7 Gün17] proves that this is well-defined and
gives a formula in coordinates.
Example 3.4 (Adjoint of the connection). To find the coefficients of ∇∗ on vector fields
in local coordinates we deduce it via integration by parts. For this let 𝜓 = 𝜓𝑖

𝑗
𝜕

𝜕𝑥𝑖 ⊗ d𝑥𝑗

and 𝜙 = 𝜙𝑎 𝜕
𝜕𝑥𝑎 with at least one of 𝜓, 𝜙 with compact support within the chart domain.

Then

∫
𝑀

⟨𝜓, ∇𝜙⟩𝑔 d𝑉𝑔 = ∫
𝑀

⟨𝜓𝑖
𝑗

𝜕
𝜕𝑥𝑖 ⊗ d𝑥𝑗, (Γ𝑏

𝑐𝑎𝜙𝑎 + 𝜕𝜙𝑏

𝜕𝑥𝑐 ) 𝜕
𝜕𝑥𝑏 ⊗ d𝑥𝑐⟩

𝑔
d𝑉𝑔

= ∫
𝑀

𝑔𝑖𝑏𝑔𝑗𝑐𝜓𝑖
𝑗 (Γ𝑏

𝑐𝑎𝜙𝑎 + 𝜕𝜙𝑏

𝜕𝑥𝑐 ) d𝑉𝑔

= ∫
𝑀

𝑔𝑖𝑏𝑔𝑗𝑐𝜓𝑖
𝑗Γ𝑏

𝑐𝑎𝜙𝑎 − 𝑔𝑖𝑏𝑔𝑗𝑐 𝜕𝜓𝑖
𝑗

𝜕𝑥𝑐 𝜙𝑏 d𝑉𝑔 (Integration by parts)

= ∫
𝑀

(𝑔𝑖𝑏𝑔𝑗𝑐𝜓𝑖
𝑗Γ𝑏

𝑐𝑎 − 𝑔𝑖𝑎𝑔𝑗𝑐 𝜕𝜓𝑖
𝑗

𝜕𝑥𝑐 ) 𝜙𝑎 d𝑉𝑔 (rename 𝑏 ⇝ 𝑎)

= ∫
𝑀

(𝑔𝑖𝑏𝑔𝑗𝑐𝜓𝑖
𝑗Γ𝑏

𝑐𝑑𝑔𝑑𝑘𝑔𝑘𝑎 − 𝑔𝑘𝑎𝑔𝑗𝑐 𝜕𝜓𝑘
𝑗

𝜕𝑥𝑐 ) 𝜙𝑎 d𝑉𝑔 (𝑔𝑑𝑘𝑔𝑘𝑎 = 𝛿𝑑
𝑎, 𝑖 ⇝ 𝑘)

= ∫
𝑀

⟨(𝑔𝑖𝑏𝑔𝑗𝑐𝜓𝑖
𝑗Γ𝑏

𝑐𝑑𝑔𝑑𝑘 − 𝑔𝑗𝑐 𝜕𝜓𝑘
𝑗

𝜕𝑥𝑐 ) 𝜕
𝜕𝑥𝑘 , 𝜙𝑎 𝜕

𝜕𝑥𝑎 ⟩
𝑔

d𝑉𝑔 .

Hence ∇∗𝜓 = 𝑔𝑗𝑐 (𝑔𝑖𝑏𝑔𝑑𝑘Γ𝑏
𝑐𝑑𝜓𝑖

𝑗 −
𝜕𝜓𝑘

𝑗

𝜕𝑥𝑐 ) 𝜕
𝜕𝑥𝑘 .

∇∗ for tensor fields can be derived similarly.
We use the adjoint to define a weak derivative with respect to a partial differential

operator.

Definition 3.5 (Weak derivative). Let 𝐷 ∈ 𝒟(𝐸, 𝐹) and 𝑓 ∈ Γ𝐿1
loc

(𝐸). We say that 𝐷𝑓
exists weakly if there is some ℎ ∈ Γ𝐿1

loc
(𝐹) such that

∫
𝑀

⟨𝐷∗𝜓, 𝑓⟩𝑔 d𝑉𝑔 = ∫
𝑀

⟨𝜓, ℎ⟩𝑔 d𝑉𝑔 for all 𝜓 ∈ Γ𝐶∞
𝑐

(𝐹) .

We write 𝐷𝑓 ∶= ℎ. ◀

The weak derivative ℎ is uniquely determined as shown in [Proposition and definition I.7
Gün17].

Now we can define Sobolev spaces of vector and tensor fields on manifolds.
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Definition 3.6 (Sobolev space of vector bundle sections). Let 𝑞 ∈ [1, ∞] and let 𝐸 and
𝐹 be smooth metric vector bundles. Let 𝐷 ∈ 𝒟(𝐸, 𝐹). Then, the Banach space

Γ𝑊 𝐷,𝑞(𝐸) ∶= {𝑓 ∈ Γ𝐿𝑞(𝐸) | 𝐷𝑓 exists and 𝐷𝑓 ∈ Γ𝐿𝑞(𝐹)}

with the norm

‖𝑓‖𝑊 𝐷,𝑞 ∶= (‖𝑓‖𝑞
𝐿𝑞 + ‖𝐷𝑓‖𝑞

𝐿𝑞)
1
𝑞 = (∫

𝑀
|𝑓|𝑞𝑔 + |𝐷𝑓|𝑞𝑔 d𝑉𝑔)

1
𝑞

is called the 𝐷-Sobolev space of 𝐿𝑞-sections of 𝐸. ◀

The following results about basic properties of Γ𝑊 𝐷,𝑞(𝐸) are proven by Güneysu
[Theorem I.19 and paragraph in front Gün17]:

Theorem 3.7 (Separability and reflexivity). For any 𝐷 ∈ 𝒟(𝐸, 𝐹), the spaces Γ𝑊 𝐷,𝑞(𝐸)
are separable for all 𝑞 ∈ [1, ∞) and reflexive for all 𝑞 ∈ (1, ∞).

It is also possible to define Sobolev spaces as the completion of smooth functions with
respect to Sobolev norms. The Meyers–Serrin Theorem states that this is an equivalent
definition. Güneysu [Gün17] also showed that this result also holds for vector bundle
sections on manifolds.

Theorem 3.8 (Meyers–Serrin theorem (Density of smooth sections)). In the situation of
Definition 3.6, let 𝑞 ∈ [1, ∞). Then, for any 𝑓 ∈ Γ𝑊 𝐷,𝑞(𝐸), there exists a sequence (𝑓𝑛)𝑛
in Γ𝐶∞(𝐸) ∩ Γ𝑊 𝐷,𝑞(𝐸) which can be chosen in Γ𝐶∞

𝑐
(𝐸) if supp 𝑓 is compact, such that

|𝑓𝑛(𝑥)| ≤ ‖𝑓‖𝐿∞ ∈ [0, ∞] for all 𝑥 ∈ 𝑀, 𝑛 ∈ ℕ
‖𝑓𝑛 − 𝑓‖𝑊 𝐷,𝑞 → 0 as 𝑛 → ∞ .

We say that the smooth sections are dense in Γ𝑊 𝐷,𝑞(𝐸) and write

Γ𝐶∞(𝐸) ∩ Γ𝑊 𝐷,𝑞(𝐸)
𝑊 𝐷,𝑞

= Γ𝑊 𝐷,𝑞(𝐸) .

3.2 Sobolev spaces defined by embedding the base manifold
The definitions of Sobolev tensor fields and the norm in Section 3.1 have the advantage
of being intrinsic. On the other hand, they have the disadvantage that in every point the
tensor field, viewed as a function from the base manifold 𝑀, maps into a different space.
This means that we cannot use the theory of mappings between manifolds. In order
to use Theorem 5.1 about the approximation of mappings between manifolds we define
Sobolev tensor field spaces differently and show that both definitions are equivalent.

By the Nash Embedding Theorem [Nas56] we can embed the base manifold 𝑀 iso-
metrically into ℝ𝑁 for some 𝑁 ∈ ℕ. This embedding is called 𝜄 throughout this section.
Then 𝜄(𝑀) is an embedded submanifold of ℝ𝑁 and thus, each 𝑇𝑝𝑀 (𝑝 ∈ 𝑀) is embedded
into ℝ𝑁 via d𝜄.

As in [Example 4.8 Lee18, p. 92], we denote the Euclidean connection in ℝ𝑁 by ∇.
That is for 𝑋 ∈ Γ𝐶∞(𝑇 𝑀), a chart 𝜑∶ 𝑀 ⊇ 𝑈 → 𝜑(𝑈) ⊂ ℝ𝑚 and an index 𝑖 ∈ {1, …, 𝑚}

∇ 𝜕
𝜕𝜑𝑖

(d𝜄 ∘ 𝑋) = ⎛⎜⎜
⎝

𝜕
𝜕𝜑𝑖 (d𝜄 ∘ 𝑋)1

⋮
𝜕

𝜕𝜑𝑖 (d𝜄 ∘ 𝑋)𝑁

⎞⎟⎟
⎠

.
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In order to distinguish the scalar product in ℝ𝑁 and the metric 𝑔 we denote the standard
scalar product with a dot · such that 𝑔(𝑣, 𝑤) = ⟨𝑣, 𝑤⟩𝑔 = d𝜄(𝑣) · d𝜄(𝑤) for all 𝑣, 𝑤 ∈ 𝑇𝑝𝑀
and 𝑝 ∈ 𝑀. In particular ∣d𝑛𝑝∣

ℝ𝑁
= 1 if ∣𝑛𝑝∣

𝑔
= 1 (for any 𝑝 ∈ 𝑀, 𝑛𝑝 ∈ 𝕊𝑝𝑀). That

means that we can consider all unit vectors at different points 𝑝 ∈ 𝑀 as elements of the
common space 𝕊𝑁−1 = {𝑣 ∈ ℝ𝑁 ∣ |𝑣|ℝ𝑁 = 1} since d𝜄(𝕊𝑝𝑀) ⊆ 𝕊𝑁−1.

We would like to have the same for lines. In Section 2.3 we introduced the constrained 𝑄-
tensor bundle 𝒬𝕊𝑀. We saw that they model lines (Note 2.5). If we apply the embedding
to the constrained 𝑄-tensors we see that they are of the form 𝑠(𝑑𝜄𝑝𝑛𝑝 ⊗𝑑𝜄𝑝𝑛𝑝 − 1

𝑚𝑑𝜄𝑝𝑔♯♯
𝑝 ) ∈

𝑇 2,0ℝ𝑁 with some 𝑛𝑝 ∈ 𝕊𝑝𝑀 at some point 𝑝 ∈ 𝑀. Therefore we would like to consider
all tangent line spaces as subsets of 𝒬𝕊ℝ𝑁 like

d𝜄(𝒬𝕊
𝑝𝑀) ⊆ 𝒬𝕊ℝ𝑁 ?= {𝑠 (𝑛 ⊗ 𝑛 − 1

𝑚
d𝜄 ∘ 𝑔♯♯) ∣ 𝑛 ∈ 𝕊𝑁−1}

but this is an invalid definition because 𝑔 depends on the point on 𝑀 whereas 𝒬𝕊ℝ𝑁

should be a common line space for all points 𝑝 ∈ 𝑀. We solve this by removing the 𝑔♯♯

in the definition of lines as presented in the following definition. This results in a very
similar model for lines.

Definition 3.9 (Sobolev spaces based on embedding the base manifold). The Sobolev
spaces based on embedding 𝑀 into a Euclidean space are for 𝑞 ∈ [1, ∞) defined as

Γ𝑊 1,𝑞(𝑇 𝑀) ∶= {𝑣 ∈ 𝑊 1,𝑞(𝑀, ℝ𝑛) ∣ 𝑣𝑝 ∈ d𝜄(𝑇𝑝𝑀) for almost all 𝑝 ∈ 𝑀} (5)

𝑊 1,𝑞(𝑀, 𝕊𝑁−1) ∶= {𝑛 ∈ 𝑊 1,𝑞(𝑀, ℝ𝑛) ∣ |𝑛|ℝ𝑁 = 1} (6)

Γ𝑊 1,𝑞(𝕊𝑀) ∶= 𝑊 1,𝑞 (𝑀, 𝕊𝑁−1) ∩ Γ𝑊 1,𝑞 (𝑇 𝑀) (7)

𝑊 1,𝑞 (𝑀, 𝒬𝕊′ℝ𝑁) ∶= {𝑄 ∈ 𝑊 1,𝑞 (𝑀, 𝑇 (2,0)ℝ𝑁) ∣ 𝑄𝑝 = 𝑛 ⊗ 𝑛 for some
𝑛 ∈ 𝕊𝑁−1 for almost every 𝑝 ∈ 𝑀}

(8)

𝑊 1,𝑞 (𝑀, 𝑇 (2,0)𝑀) ∶= {𝑄 ∈ 𝑊 1,𝑞 (𝑀, 𝑇 (2,0)ℝ𝑁) ∣ 𝑄𝑝(𝜂, ·) = 𝑄𝑝(·, 𝜂) = 0
for all 𝜂⊥ d𝜄(𝑇𝑝𝑀) for almost every 𝑝 ∈ 𝑀}

(9)

Γ𝑊 1,𝑞 (𝒬𝕊′𝑀) ∶= 𝑊 1,𝑞(𝑀, 𝒬𝕊′ℝ𝑁) ∩ Γ𝑊 1,𝑞 (𝑇 (2,0)𝑀) . (10)

We identify tangent line fields defined intrinsically with tangent line fields defined with
the embedding 𝜄 via

𝜄𝒬 ∶ Γ𝑊 ∇,𝑞(𝒬𝕊𝑀) → Γ𝑊 1,𝑞(𝒬𝕊′𝑀)

𝜄𝒬(𝑄) ∶= 𝜄∗ (𝑄
𝑠

+ 1
𝑚

𝑔♯♯) .
(11)

We also extend the definition of the projection operator 𝑃 to unit vector fields that are
not necessarily tangent to 𝑀. Here we use as in Definition 2.4 the same notation 𝑃𝑁 for
two closely related maps. It will be clear from the context which one is used.

𝑃𝑁 ∶ 𝕊𝑁−1 → 𝒬𝕊′ℝ𝑁

𝑃𝑁(𝑛) ∶= 𝑛 ⊗ 𝑛

𝑃𝑁 ∶ 𝑊 1,𝑞 (𝑀, 𝕊𝑁−1) → 𝑊 1,𝑞 (𝑀, 𝒬𝕊′ℝ𝑁)
(𝑃𝑁(𝑛))(𝑝) ∶= 𝑛(𝑝) ⊗ 𝑛(𝑝) (for all 𝑝 ∈ 𝑀)

(12)
◀
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The definition of 𝑃𝑁 claims, that it maps into 𝑊 1,𝑞(𝑀, 𝒬𝕊′ℝ𝑁). This will be justified
in Lemma 3.11 in basically the same way as in Lemma 1 of [BZ11].

In order to calculate with with classical derivatives we need the ACL characterisation.
ACL stands for ‘absolutely continuous on lines’.

Theorem 3.10 (Nikodym, ACL characterization). (from [Theorem 1.49 Kin21]) Assume
that 𝑢 ∈ 𝑊 1,𝑞

loc (Ω), 1 ≤ 𝑞 ≤ ∞ and let Ω′ ⋐ Ω be compactly embedded in Ω. Then, there
exists 𝑢∗ ∶ Ω → [−∞, ∞] such that 𝑢∗ = 𝑢 almost everywhere in Ω and 𝑢∗ is absolutely
continuous on (𝑛 − 1)-dimensional Lebesgue measure almost every line segments in Ω′

that are parallel to the coordinate axes and the classical partial derivatives of 𝑢∗ coincide
with the weak partial derivatives of 𝑢 almost everywhere in Ω. Conversely, if 𝑢 ∈ 𝐿𝑞

loc(Ω)
and there exists 𝑢∗ as above such that 𝐷𝑢∗ ∈ 𝐿𝑞

loc(Ω), 𝑖 = 1, …, dim Ω, then 𝑢 ∈ 𝑊 1,𝑞
loc (Ω).

Lemma 3.11 (Image of embedding based projection). Let 𝑞 ∈ [1, ∞). For a Sobolev
unit vector field 𝑛 ∈ 𝑊 1,𝑞(𝑀, 𝕊𝑁−1), the corresponding line field 𝑄 = 𝑃𝑁(𝑛) is in
𝑊 1,𝑞(𝑀, 𝒬𝕊′ℝ𝑁). Conversely, if 𝑃𝑁(𝑛) = 𝑄 ∈ 𝑊 1,𝑞(𝑀, 𝒬𝕊′ℝ𝑁) and 𝑛 is continuous,
then 𝑛 ∈ 𝑊 1,𝑞(𝑀, 𝕊𝑁−1).

Proof. For the first part let 𝑛 ∈ 𝑊 1,𝑞(𝑀, 𝕊𝑁−1). The component functions of 𝑄 = 𝑃(𝑛)
are products of components of 𝑛 and thus weakly differentiable. Furthermore in a chart
domain 𝑈 ⊆ 𝑀 with orthonormal frame (𝐸𝑖)𝑖 and coframe (𝜀𝑖)𝑖 we have

∇𝑄 = ∇𝐸𝑖
𝑛 ⊗ 𝑛 ⊗ 𝜀𝑖 + 𝑛 ⊗ ∇𝐸𝑖

𝑛 ⊗ 𝜀𝑖 .

Since |𝑛|𝑔 is bounded, ∇𝑄 ∈ 𝐿𝑞(𝑀, 𝑇 (2,0)ℝ𝑁 ⊗ 𝑇 ∗𝑀) and 𝑄 is bounded. Therefore,
𝑄 ∈ 𝑊 1,𝑞(𝑀, 𝒬𝕊′ℝ𝑁).

For the second part assume 𝑃𝑁(�̂�) = �̂� ∈ 𝑊 1,𝑞(𝑀, 𝒬𝕊′ℝ𝑁) and �̂� ∈ 𝐶(𝑀, 𝕊𝑁−1). Take
a chart 𝜑∶ 𝑀 ⊇ 𝑈 → ℝ𝑚 and consider �̂� and �̂� in those coordinates: 𝑄 ∶= �̂�∣

𝑈
∘ 𝜑−1

and 𝑛 ∶= �̂�|𝑈 ∘ 𝜑−1. For 𝑄 we use the ACL characterization Theorem 3.10 and write 𝑄
for 𝑄∗ without loss of generality. For almost any point 𝑝 ∈ 𝜑(𝑈) and a direction 𝑒𝑘 we
consider the difference (𝑡 ∈ ℝ sufficiently small)

𝑄𝑖𝑗(𝑝 + 𝑡𝑒𝑘) − 𝑄𝑖𝑗(𝑝) = 𝑛𝑖(𝑝 + 𝑡𝑒𝑘)𝑛𝑗(𝑝 + 𝑡𝑒𝑘) − 𝑛𝑖(𝑝)𝑛𝑗(𝑝)
= 𝑛𝑖(𝑝 + 𝑡𝑒𝑘) (𝑛𝑗(𝑝 + 𝑡𝑒𝑘) − 𝑛𝑗(𝑝)) + (𝑛𝑖(𝑝 + 𝑡𝑒𝑘) − 𝑛𝑖(𝑝)) 𝑛𝑗(𝑝)

When multiplying with 1
2 (𝑛𝑗(𝑝 + 𝑡𝑒𝑘) + 𝑛𝑗(𝑝)) and summing over 𝑗 we use that the first

term vanishes because of
𝑁

∑
𝑗=1

(𝑛𝑗(𝑝 + 𝑡𝑒𝑘) − 𝑛𝑗(𝑝)) (𝑛𝑗(𝑝 + 𝑡𝑒𝑘) + 𝑛𝑗(𝑝)) =
𝑁

∑
𝑗=1

𝑛𝑗(𝑝 + 𝑡𝑒𝑘)2 − 𝑛𝑗(𝑝)2 = 1 − 1 = 0

and get after dividing by 𝑡

1
𝑡

𝑁
∑
𝑗=1

((𝑄𝑖𝑗(𝑝 + 𝑡𝑒𝑘) − 𝑄𝑖𝑗(𝑝)) · 1
2

(𝑛𝑗(𝑝 + 𝑡𝑒𝑘) + 𝑛𝑗(𝑝)))

=1
𝑡

𝑁
∑
𝑗=1

(𝑛𝑖(𝑝 + 𝑡𝑒𝑘) − 𝑛𝑖(𝑝)) 𝑛𝑗(𝑝) · 1
2

(𝑛𝑗(𝑝 + 𝑡𝑒𝑘) + 𝑛𝑗(𝑝)) .

When we let 𝑡 → 0 and use that 𝑄 is differentiable and 𝑛 is continuous, we get

lim
𝑡→0

𝑛𝑖(𝑝 + 𝑡𝑒𝑘) − 𝑛𝑖(𝑥)
𝑡

=
𝑁

∑
𝑗=1

𝜕𝑘𝑄𝑖𝑗(𝑝)𝑛𝑗(𝑝) .
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This shows that the partial classical derivatives of 𝑛 exist a. e. in 𝜑(𝑈) and satisfy

𝜕𝑘𝑛𝑖 =
𝑁

∑
𝑗=1

𝜕𝑘𝑄𝑖𝑗𝑛𝑗, (13)

and since ∇𝑄 ∈ 𝐿𝑞 it follows from the ACL characterization that 𝑛 ∈ 𝑊 1,𝑞(𝜑(𝑈), 𝕊𝑁−1)
and hence since 𝑈 was arbitrary, �̂� ∈ 𝑊 1,𝑞(𝑀, 𝕊𝑁−1).

In order to relate differentiability in ℝ𝑁 with intrinsic covariant differentiability on 𝑀,
we need to know how the Levi-Civita connection looks on the embedded manifold.

Proposition 3.12 (Levi-Civita connection of embedding). The Levi-Civita connection
on 𝑀 is given by ∇ = 𝜄∗∇𝑇 with ∇𝑇 being the tangential connection as defined in Lee
[(4.4) Lee18, p. 87]:

∇𝑇
𝑣 𝑌 ∶= 𝜋𝑇 (∇𝑣

̃𝑌 )

where 𝜋𝑇 is the projection onto the tangent space, ∇ is the Euclidean connection in the
surrounding space and ̃𝑌 is an extension of the vector field 𝑌 to the surrounding space.

Proof. Lee [Example 4.9 Lee18, p. 93] shows that the tangential connection is well-defined.
By Lee [Propositon 5.12 (b) Lee18, p. 124] the tangential connection is the unique Levi-
Civita connection of the embedded manifold 𝜄(𝑀). Also by Lee [Proposition 5.13 Lee18,
p. 125] and since 𝜄 ∶ 𝑀 → 𝜄(𝑀) is an isometry, 𝜄∗∇𝑇 = ∇.

Since ∇ = 𝜄∗∇𝑇, the intrinsic norm can be calculated in the embedding as

‖𝜄∗𝑋‖𝑊 ∇,𝑞 = 𝑞√∫
𝑀

|𝜄∗𝑋|𝑞ℝ𝑁 + |∇𝑇(𝜄∗𝑋)|𝑞ℝ𝑁 d𝑉𝑔 (𝑋 ∈ Γ𝑊 ∇,𝑞(𝑇 𝑀)) .

On the other hand the norm on Γ𝑊 1,𝑞(𝑇 𝑀) is

‖𝑋‖𝑊 1,𝑞 = 𝑞√∫
𝑀

|𝑋|𝑞ℝ𝑁 + ∣∇𝑋∣𝑞
ℝ𝑁

d𝑉𝑔 (𝑋 ∈ 𝑊 1,𝑞(𝑇 𝑀)) .

In order to show equality of the definitions we need to show that those norms are
equivalent.

Lemma 3.13 (Standard and tangential norm). Let 𝜄 ∶ 𝑀 ↪ ℝ𝑁 be an isometric embedding
of a compact Riemannian manifold 𝑀. Then, there exists a constant 𝐶 depending on 𝑀,
𝑁 and 𝜄 such that for all 𝑋 ∈ Γ𝐶∞(𝑇 𝑀)

‖𝑋‖𝑊 ∇,𝑞 ≤ ‖𝜄∗𝑋‖𝑊 1,𝑞 ≤ 𝐶 ‖𝑋‖𝑊 ∇,𝑞 (14)

It follows that

𝜄∗ ∶ Γ𝑊 ∇,𝑞(𝑇 𝑀) → Γ𝑊 1,𝑞(𝑇 𝑀)
𝜄𝑄 ∶ Γ𝑊 ∇,𝑞(𝒬𝕊𝑀) → Γ𝑊 1,𝑞(𝒬𝕊′𝑀)

are continuous and bijective with continuous inverse. In the case of the linear operator 𝜄∗
this means that the norms are comparable and the spaces Γ𝑊 ∇,𝑞(𝑇 𝑀) and Γ𝑊 1,𝑞(𝑇 𝑀)
are isomorphic.
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Proof. Let 𝑝 ∈ 𝑈 ⊆ 𝑀 be a chart domain with chart 𝜃 so that the coordinates on 𝑀
are called 𝜃1, …, 𝜃𝑚 and the coordinates on ℝ𝑁 are called 𝑥1, …, 𝑥𝑁. Denote the 𝑖th
component of the embedding by 𝜄𝑖 ∶ ℝ𝑚 ⊇ 𝜃(𝑈) → ℝ defined by 𝑥𝑖 ∘ 𝜄 = 𝜄𝑖 ∘ 𝜃. Let
𝑣 = 𝑣𝑗 𝜕

𝜕𝜃𝑗 be a local tangent vector field around 𝑝 and 𝑤 a direction, i. e. tangent vector,
at 𝑝. Then

𝜄∗𝑣 = d𝜄 ( 𝜕
𝜕𝜃𝑗 ) = 𝜕𝜄𝑖

𝜕𝜃𝑗
𝜕

𝜕𝑥𝑖

d𝜄 (𝑣𝑗 𝜕
𝜕𝜃𝑗 ) = 𝑣𝑗 𝜕𝜄𝑖

𝜕𝜃𝑗⏟
∶= ̃𝑣𝑖

𝜕
𝜕𝑥𝑖

∇𝑤(𝜄∗𝑣) = 𝑤( ̃𝑣𝑖) 𝜕
𝜕𝑥𝑖

= 𝑤 (𝑣𝑗 𝜕𝜄𝑖

𝜕𝜃𝑗 ) 𝜕
𝜕𝑥𝑖

= ( 𝑤(𝑣𝑗) 𝜕𝜄𝑖

𝜕𝜃𝑗⏟⏟⏟⏟⏟
scalar mult.

+𝑣𝑗 𝑤 ( 𝜕𝜄𝑖

𝜕𝜃𝑗 )
⏟⏟⏟⏟⏟

twice diff.

) 𝜕
𝜕𝑥𝑖

The tangential connection ∇𝑇
𝑤 is the orthogonal projection of the standard connection

∇𝑤 onto the tangent space. Call the orthogonal complement ∇⊥
𝑤, such that

∣∇𝑤𝜄∗𝑣∣2
ℝ𝑁

= ∣∇𝑇
𝑤𝜄∗𝑣∣2

ℝ𝑁
+ ∣∇⊥

𝑤𝜄∗𝑣∣2
ℝ𝑁

. (15)

Note that this is an abuse of notation because ∇⊥ is not a connection.
Therefore, in order to compare the two norms we need to look at ∇⊥

𝑤𝑣. To calculate
∇⊥

𝑤, take a local orthonormal frame of the normal bundle around 𝜄(𝑝) and call it (𝜂𝑙)𝑙.
Call the corresponding set of covectors 𝜂𝑙 such that

𝜂𝑙(d𝜄(𝑣)) = 0 for all 𝑣 ∈ 𝑇𝑝𝑀, that is 𝑣(𝜄𝑖)𝜂𝑙
𝑖 = 0 (16)

Then ∇⊥
𝑤(𝑣) = 𝜂𝑙(∇𝑤𝑣)𝜂𝑙 = 𝜂𝑙

𝑖 (𝑤(𝑣𝑗) 𝜕𝜄𝑖

𝜕𝜃𝑗 + 𝑣𝑗𝑤 ( 𝜕𝜄𝑖

𝜕𝜃𝑗 )) 𝜂𝑙

= (𝑤(𝑣𝑗) 𝜕
𝜕𝜃𝑗 (𝜄𝑖)𝜂𝑙

𝑖⏟⏟⏟⏟⏟
(16)
= 0

+𝜂𝑙
𝑖𝑣

𝑗𝑤 ( 𝜕𝜄𝑖

𝜕𝜃𝑗 ) )𝜂𝑙

= 𝑣𝑗 𝜂𝑙
𝑖𝑤 ( 𝜕𝜄𝑖

𝜕𝜃𝑗 ) 𝜂𝑙
⏟⏟⏟⏟⏟⏟⏟

indep. of 𝑣

(17)

When we plug in an orthonormal basis (𝑤𝑖)𝑖 for 𝑤 at each point, we can bound the term
in the last line that is independent of 𝑣 globally by some constant 𝐶 ≥ 1 since 𝑀 is
compact and 𝜂𝑙 and 𝜄 are smooth. Hence for 𝑣 ∈ Γ𝐶∞(𝑇 𝑀)

‖𝑣‖𝑞
𝑊 ∇,𝑞 = ∫

𝑀
|𝑣|𝑞𝑔 + |∇𝑣|𝑞𝑔 d𝑉𝑔

= ∫
𝑀

|𝜄∗𝑣|𝑞ℝ𝑁 +
𝑚

∑
𝑖=1

∣∇𝑇
𝑤𝑖

(𝜄∗𝑣)∣
𝑞

ℝ𝑁
d𝑉𝑔

(15)
≤ ∫

𝑀
|𝜄∗𝑣|𝑞ℝ𝑁 +

𝑚
∑
𝑖=1

∣∇𝑤𝑖
(𝜄∗𝑣)∣

𝑞

ℝ𝑁
d𝑉𝑔
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= ‖𝜄∗𝑣‖𝑞
𝑊 1,𝑞

= ∫
𝑀

|𝜄∗𝑣|𝑞ℝ𝑁 +
𝑚

∑
𝑖=1

(∣∇𝑇
𝑤𝑖

(𝜄∗𝑣)∣
2

ℝ𝑁
+ ∣∇⊥

𝑤𝑖
(𝜄∗𝑣)∣

2

ℝ𝑁
)

𝑞
2

d𝑉𝑔

≤ ∫
𝑀

|𝜄∗𝑣|𝑞ℝ𝑁 +
𝑚

∑
𝑖=1

(∣∇𝑇
𝑤𝑖

(𝜄∗𝑣)∣
2

ℝ𝑁
+ 𝐶2 |𝜄∗𝑣|2)

𝑞
2

d𝑉𝑔

≤ ∫
𝑀

|𝜄∗𝑣|𝑞ℝ𝑁 + 2 𝑞
2 (

𝑚
∑
𝑖=1

∣∇𝑇
𝑤𝑖

(𝜄∗𝑣)∣
𝑞

ℝ𝑁
+ |𝜄∗𝑣|𝑞 𝐶𝑞) d𝑉𝑔

𝐶≥1
≤ 2 𝑞

2 𝐶𝑞 ‖𝑣‖𝑞
𝑊 ∇,𝑞

So the norms are equivalent. The topology of 𝑀 is the subspace topology as a submanifold
of ℝ𝑁. Therefore, the definition of ‘measurable function’ is the same. Since smooth
functions are dense in Γ𝑊 ∇,𝑞(𝑇 𝑀) by Theorem 3.8 and 𝑊 1,𝑞(𝑀, ℝ𝑁) is complete and
𝑊 1,𝑞(𝑇 𝑀) is a closed subspace of 𝑊 1,𝑞(𝑀, ℝ𝑁), 𝜄∗ is a linear continuous map. It remains
to show that 𝜄∗(Γ𝑊 ∇,𝑞(𝑇 𝑀)) = 𝑊 1,𝑞(𝑇 𝑀) and not a smaller subspace.

Lemma 3.14 (Density of smooth sections in embedding). The smooth sections Γ𝐶∞(𝑇 𝑀)
are dense in Γ𝑊 1,𝑞(𝑇 𝑀).

Proof. The smooth functions 𝐶∞(𝑀, ℝ𝑁) are dense in 𝑊 1,𝑞(𝑀, ℝ𝑁). Therefore, we
can find for any 𝑋 ∈ Γ𝑊 1,𝑞(𝑇 𝑀) a sequence of smooth functions 𝑋(𝑘) ∈ 𝐶∞(𝑀, ℝ𝑁)
converging to 𝑋 in the 𝑊 1,𝑞 norm. We want to show that by projecting the 𝑋(𝑘) onto
𝑇 𝑀 we get an approximating sequence of tangent vector fields. The projection 𝜋𝑇

mentioned in Proposition 3.12 can locally be written as 𝜋𝑇(𝑣) = 𝑣 − 𝜂𝑙(𝑣)𝜂𝑙 with the
local orthonormal frame of the normal bundle introduced above before (16). This shows
that ∣𝜋𝑇(𝑣)∣

ℝ𝑁
≤ |𝑣|ℝ𝑁 . Furthermore 𝜋𝑇 is the identity on values of 𝑋 and linear and

therefore,

∇(𝜋𝑇 ∘ 𝑋(𝑘) − 𝑋) = ∇(𝜋𝑇 ∘ (𝑋(𝑘) − 𝑋)) = 𝐷𝜋𝑇(∇(𝑋(𝑘) − 𝑋)

and since 𝑀 and 𝜄 are smooth and 𝑀 is compact, ∣𝐷𝜋𝑇∣
ℝ𝑁

can be bound by some global
constant 𝐶. Hence ∥𝜋𝑇 ∘ 𝑋(𝑘) − 𝑋∥

𝑊 1,𝑞
≤ 𝐶 ∥𝑋(𝑘) − 𝑋∥

𝑊 1,𝑞
→ 0 as 𝑘 → ∞. 𝜋𝑇 ∘ 𝑋(𝑘) is

smooth since 𝜋𝑇 is smooth. Therefore, 𝑋 can be approximated by smooth tangent vector
fields.

Lemma 3.14 shows that, indeed, 𝜄∗ maps bijectively the completion Γ𝑊 ∇,𝑞(𝑇 𝑀) of
Γ𝐶∞(𝑇 𝑀) onto the completion Γ𝑊 1,𝑞(𝑇 𝑀) of Γ𝐶∞(𝑇 𝑀).

The proof for 𝑇 (2,0) tensors is essentially the same, just with more indices. The local
orthonormal frame of the normal bundle is of the form

(𝜂𝑙 ⊗ 𝜀𝑟, 𝜀𝑟 ⊗ 𝜂𝑙, 𝜂𝑙 ⊗ 𝜂𝑙′)𝑙,𝑙′=1,…,𝑁−𝑚,𝑟=1,…,𝑚

with (𝜂𝑙)𝑙 being the orthonormal frame of the normal bundle as before and (𝜀𝑟)𝑟 a local
orthonormal frame of the tangent bundle.

The identifications 𝜄𝑄 and 𝜄∗ are continuous with continuous inverse since 𝑄 ↦ 𝑄
𝑠 + 1

𝑚𝑔♯♯

is an affine transformation.
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3.3 Sobolev field spaces on parallelizable manifolds

We need connections to define differentiation of tensor fields on manifolds because the
tangent spaces at different points cannot otherwise be identified in a natural manner.
If the tangent bundle is trivial though, we have another way of identifying the tangent
spaces. Manifolds with trivial tangent bundle are called parallelizable. In this case we
can define Sobolev spaces based on this trivialization and will need this definition for
the proof of Theorem 5.12. In this section we will show that the Sobolev space based on
the trivialization is isomorphic to the intrinsic definition based on the connection from
Section 3.1.

Within this section assume that the manifold 𝑀 is parallelizable and choose a global
orthonormal smooth frame (𝐵1, …, 𝐵𝑚).

Definition 3.15 (Sobolev field spaces on parallelizable manifold). Define for 𝑞 ∈ [1, ∞)

𝑊 1,𝑞
q (𝑇 𝑀) ∶= {𝑋 ∈ Γℒ(𝑇 𝑀) ∣ ⟨𝐵𝑖, 𝑋⟩𝑔 ∈ 𝑊 1,𝑞(𝑀, ℝ) (𝑖 = 1, …, 𝑚)}

‖𝑋‖𝑊 1,𝑞
q

∶= 𝑞√
𝑚

∑
𝑖=1

∥⟨𝐵𝑖, 𝑋⟩𝑔∥
𝑞

𝑊 1,𝑞

𝑊 1,𝑞
q (𝒬𝑀) ∶= {𝑄 ∈ Γℒ(𝒬𝑀) ∣ ⟨𝐵𝑖 ⊗ 𝐵𝑗, 𝑄⟩

𝑔
∈ 𝑊 1,𝑞(𝑀, ℝ) (𝑖, 𝑗 = 1, …, 𝑚)}

‖𝑄‖𝑊 1,𝑞
q

∶= 𝑞√
𝑚

∑
𝑖,𝑗=1

∥⟨𝐵𝑖 ⊗ 𝐵𝑗, 𝑄⟩
𝑔
∥
𝑞

𝑊 1,𝑞
◀

Lemma 3.16 (Equivalence of standard and trivialization norm). The norms ‖·‖Γ𝑊∇,𝑞

and ‖·‖𝑊 1,𝑞
q

are equivalent on Γ𝐶1(𝑇 𝑀). That means that there exists 𝐶 ≥ 1 such that
for all 𝑋 ∈ Γ𝐶1(𝑇 𝑀),

1
𝐶

‖𝑋‖Γ𝑊∇,𝑞
≤ ‖𝑋‖𝑊 1,𝑞

q
≤ 𝐶 ‖𝑋‖Γ𝑊∇,𝑞

. (18)

This implies that

𝑊 1,𝑞
q (𝑇 𝑀) and Γ𝑊 ∇,𝑞(𝑇 𝑀) are isomorphic (19)

and 𝑊 1,𝑞
q (𝒬𝑀) and Γ𝑊 ∇,𝑞(𝒬𝑀) are isomorphic. (20)

Proof. We estimate the 𝑊 1,𝑞
q -norm against the intrinsic norm. This is possible since the

frame is smooth on a compact domain and therefore, |𝐵𝑖|𝑔 = 1 and ‖∇𝐵𝑖‖𝐿𝑞
is bounded

for every 𝑖 = 1, ….𝑚.

‖𝑋‖𝑞
𝑊 1,𝑞

q
=

𝑚
∑
𝑖=1

∥⟨𝐵𝑖, 𝑋⟩𝑔∥
𝑞

𝐿𝑞
+

𝑚
∑
𝑖=1

∥∇ ⟨𝐵𝑖, 𝑋⟩𝑔∥
𝑞

𝐿𝑞

= ‖𝑋‖𝑞
𝐿𝑞 +

𝑚
∑
𝑖=1

∥
𝑚

∑
𝑗=1

(⟨∇𝐵𝑗
𝐵𝑖, 𝑋⟩

𝑔
+ ⟨𝐵𝑗, ∇𝐵𝑗

𝑋⟩
𝑔
) 𝐵♭

𝑗∥
𝑞

𝐿𝑞

∣
𝑚

∑
𝑗=1

(⟨∇𝐵𝑗
𝐵𝑖, 𝑋⟩

𝑔
+ ⟨𝐵𝑗, ∇𝐵𝑗

𝑋⟩
𝑔
) 𝐵♭

𝑗∣
𝑞

𝑔
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= (
𝑚

∑
𝑗=1

(⟨∇𝐵𝑗
𝐵𝑖, 𝑋⟩

𝑔
+ ⟨𝐵𝑗, ∇𝐵𝑗

𝑋⟩
𝑔
)

2
)

𝑞
2

≤ (
𝑚

∑
𝑗=1

2 (∣∇𝐵𝑗
𝐵𝑖∣

2

𝑔
· |𝑋|2𝑔 + ∣𝐵𝑗∣

2
𝑔

· ∣∇𝐵𝑗
𝑋∣

2

𝑔
))

𝑞
2

≤ 2 𝑞
2 (|∇𝐵𝑖|

2
𝑔 · |𝑋|2𝑔 + 1 · |∇𝑋|2𝑔)

𝑞
2

= 2 𝑞
2 · 2 𝑞

2 (|∇𝐵𝑖|
𝑞
𝑔 · |𝑋|𝑞𝑔 + |∇𝑋|𝑞𝑔)

⟹ ‖𝑋‖𝑞
𝑊 1,𝑞

q
≤ ‖𝑋‖𝑞

𝐿𝑞 + 2𝑞 (
𝑚

∑
𝑖=1

‖∇𝐵𝑖‖
𝑞
𝐿𝑞) ‖𝑋‖𝑞

𝐿𝑞 + 2𝑞𝑚 ‖∇𝑋‖𝑞
𝐿𝑞

≤ 𝐶 ‖𝑋‖𝑞
𝑊 ∇,𝑞

To get the estimate in the other direction we write ∇𝑋 in the coordinates 𝐵1, …, 𝐵𝑚 with
Christoffel symbols. The coordinates are called 𝑋𝑖 ∶= ⟨𝐵𝑖, 𝑋⟩𝑔. The Christoffel symbols
can be calculated from the 𝐵𝑖’s and are therefore bounded on the compact domain 𝑀 by
some constant 𝐶.

‖𝑋‖𝑞
𝑊 ∇,𝑞 = ‖𝑋‖𝑞

𝐿𝑞 + ∥(𝐵𝑗(𝑋𝑖) + Γ𝑖
𝑗𝑘𝑋𝑘) 𝐵𝑖 ⊗ 𝐵♭

𝑗∥
𝑞

𝐿𝑞

∣(𝐵𝑗(𝑋𝑖) + Γ𝑖
𝑗𝑘𝑋𝑘) 𝐵𝑖 ⊗ 𝐵♭

𝑗∣
𝑞

𝑔
≤ ∣

𝑚
∑
𝑖,𝑗=1

(𝐵𝑗(𝑋𝑖) + 𝐶
𝑚

∑
𝑘=1

𝑋𝑘)
2

∣

𝑞
2

≤ (𝑚 + 1) 𝑞
2 (

𝑚
∑
𝑖,𝑗=1

(∣𝐵𝑗(𝑋𝑖)∣2 + 𝐶2
𝑚

∑
𝑘=1

(𝑋𝑘)2))

𝑞
2

= (𝑚 + 1) 𝑞
2 (𝑚2𝐶2 |𝑋|2𝑔 + ∣∇(𝑋𝑖)𝑖∣

2
𝑔
)

𝑞
2

= (𝑚 + 1) 𝑞
2 2 𝑞

2 (𝑚𝑞𝐶𝑞 |𝑋|𝑞𝑔 + ∣∇(𝑋𝑖)𝑖∣
𝑞
𝑔
)

⟹ ‖𝑋‖𝑞
𝑊 ∇,𝑞 ≤ (2𝑚 + 2) 𝑞

2 (𝑚𝑞𝐶𝑞 + 1) ‖𝑋‖𝑞
𝑊 1,𝑞

q

We know that the smooth sections are dense in Γ𝑊 ∇,𝑞(𝑇 𝑀) and 𝑊 1,𝑞
q (𝑇 𝑀) by The-

orem 3.8 and Theorem I.19 of [Gün17] applied on ℝ𝑚 as the vector bundle. Therefore,
the norm estimates carry over to the Sobolev spaces, proving the result for vector fields.
For (2, 0)-tensors the same argument holds, just the calculations are longer and imply
different constants.

3.3.1 Fractional Sobolev space and trace

The goal of Section 5.2 is to reduce the question of orientability on a surface to the
orientability on loops. For continuous functions restricting to a lower-dimensional manifold
is trivial. In the case of Sobolev functions the restriction is not immediately well-defined
since a lower-dimensional manifold is a Lebesgue null set. So any Sobolev function can be
redefined on the submanifold without changing the function. This problem is solved by
traces which give a meaning to the restriction of a Sobolev function to a submanifold. The
idea is to define the trace for smooth functions by restriction and show that this defines
a continuous operator and can thus be continuously extended to all Sobolev functions.
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The more simple form shows that the trace of a 𝑊 1,𝑞 function on a submanifold with
one dimension less is an 𝐿𝑞 function. Unfortunately this is not sufficient as we will see
in Section 5.2. Indeed, the functions that are traces are more regular than 𝐿𝑞 but less
regular than 𝑊 1,𝑞. These function spaces are called fractional Sobolev spaces. There are
four ways to define them which are all equivalent in the Hilbert space case 𝑞 = 2.

• The Fourier transform turns differentiation into multiplication operators. Multi-
plication operators multiply the value of a function by a power of the argument.
This can also be defined for fractional exponents.

• The image of the trace operator.

• All 𝐿2-functions that have a finite Gagliardo–Slobodeckij norm:

‖𝑓‖𝑡,2 ∶= ∫
Ω

∫
Ω

|𝑓(𝑥) − 𝑓(𝑦)|2

|𝑥 − 𝑦|2𝑡+dim Ω d𝑥 d𝑦 < ∞ .

Here 0 < 𝑡 < 1 is the differentiation degree and Ω is the domain.

• Interpolation spaces between Sobolev spaces as in [7.57 AF03].

Since we use the same ideas as Ball and Zarnescu [BZ11] we will use their definition
which they take from [BN95].

Definition 3.17 (Fractional Sobolev space). (From [Example 2 BN95]) Let 𝑁 be a
Riemannian manifold of dimension 𝑛, 0 < 𝑡 < 1 the differentiation degree and 𝑞 ∈ [1, ∞).
Then the intrinsic definition of the fractional Sobolev space 𝑊 𝑡,𝑞(𝑁, ℝ) is

𝑊 𝑡,𝑞(𝑁, ℝ) ∶= {𝑢 ∈ 𝐿𝑞(𝑁, ℝ) ∣ ∫
𝑁

∫
𝑁

|𝑢(𝑥) − 𝑢(𝑦)|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 < ∞} (21)

with the norm

‖𝑢‖𝑊 𝑡,𝑞 ∶= (‖𝑢‖𝑞
𝐿𝑞 + ∫

𝑁
∫

𝑁

|𝑢(𝑥) − 𝑢(𝑦)|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 )
1
𝑞

. (22)

Here dist(𝑥, 𝑦) is the distance on 𝑁 that is given by the infimum of lengths of paths from
𝑥 to 𝑦. ◀

Other papers like [BW93] first define 𝑊 𝑡,𝑞(ℝ𝑛, ℝ) and then use charts and a partition
of unity to reduce the manifold case to the flat one. Call this fractional Sobolev space
𝑊 𝑡,𝑞

𝜂,𝜑𝑁, ℝ when it is based on a partition of unity 𝜂 subordinate to an atlas 𝜑. This
space has a different Gagliardo–Slobodeckij norm but it stays comparable:

Lemma 3.18 (Equivalence of Gagliardo–Slobodeckij norms). The compact manifold
𝑁 of dimension 𝑛 is equipped with a finite smooth partition (𝜂𝑘)1≤𝑘≤𝐾 subordinate to a
finite atlas ((𝑈𝑘, 𝜑𝑘))1≤𝑘≤𝐾. Let the exponent be 𝑞 ∈ [1, ∞) and the differentiation degree
be 0 < 𝑡 < 1 such that 𝑞(1 − 𝑡) − 𝑛 ≥ 0. Then the norm on 𝐶∞(𝑁, ℝ) induced by the
partition of unity and the atlas

‖𝑢‖𝜂,𝜑,𝑊 𝑡,𝑞 ∶= (
𝐾

∑
𝑘=1

∥(𝜂𝑘𝑢) ∘ 𝜑−1
𝑘 ∥𝑞

𝑊 𝑡,𝑞
)

1
𝑞

where ‖𝑤‖𝑊 𝑡,𝑞 ∶= (‖𝑤‖𝑞
𝐿𝑞 + ∫

ℝ𝑛

∫
ℝ𝑛

|𝑤(𝑥) − 𝑤(𝑦)|𝑞

|𝑥 − 𝑦|𝑡𝑞+𝑛 )
1
𝑞

on 𝐶∞(ℝ𝑛, ℝ)
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is equivalent to the intrinsic norm ‖·‖𝑊 𝑡,𝑞 defined in (22). Note that supp(𝜂𝑘𝑢) ⊂ 𝑈𝑘 and
therefore (𝜂𝑘𝑢) ∘ 𝜑−1

𝑘 can trivially be extended from 𝜑𝑘(𝑈𝑘) ⊆ ℝ𝑛 to the entire space ℝ𝑛

by zero.

Remark 3.19 (Exponent condition). The condition 𝑞(1 − 𝑡) − 𝑛 ≥ 0 is fulfilled in our
case of 1-dimensional submanifolds of surfaces because 2(1 − 1

2) − 1 = 0.

Proof. First we see that the 𝐿𝑞-norm parts are comparable.

‖𝑢‖𝜂,𝜑,𝐿𝑞 =
𝐾

∑
𝑘=1

∫
ℝ𝑁

((𝜂𝑘𝑢) ∘ 𝜑−1
𝑘 )𝑞 =

𝐾
∑
𝑘=1

∫
𝑈𝑘

(𝜂𝑘𝑢)𝑞 d𝑉𝑔

=
𝐾

∑
𝑘=1

∫
𝑁

𝜂𝑞
𝑘𝑢𝑞 d𝑉𝑔 = ∫

𝑁
(

𝐾
∑
𝑘=1

𝜂𝑞
𝑘) 𝑢𝑞 d𝑉𝑔 .

For the summands we know 𝑛𝑞
𝑘 ≤ 𝜂𝑘 since 𝑞 ≥ 1 and 𝜂𝑘 ≤ 1. On the other hand, for the

sum we have the mean inequality that states

(
∑𝐾

𝑘=1 𝜂𝑞
𝑘

𝐾
)

1
𝑞

≥
∑𝐾

𝑘=1 𝜂𝑘

𝐾
= 1

𝐾

and hence,
𝐾

∑
𝑘=1

𝜂𝑞
𝑘 ≥ 𝐾1−𝑞 > 0 .

Consequently, 𝐾1−𝑞 ‖𝑢‖𝐿𝑞 ≤ ‖𝑢‖𝜂,𝜑,𝐿𝑞 ≤ ‖𝑢‖𝐿𝑞 .

As the next step, we compare |𝜑𝑘(𝑥) − 𝜑𝑘(𝑦)| with dist(𝑥, 𝑦) for any 𝑥, 𝑦 ∈ 𝑈𝑘 for some
𝑘 ∈ {1, …, 𝐾}. Both values are the infimum of path lengths from one point to the other
but with different way of calculating the path length. Since the number of maps 𝐾 is
finite and all maps are smooth, the differentials 𝐷𝜑𝑘 and 𝐷𝜑−1

𝑘 are uniformly bounded
by some 𝐶 > 0, independent of 𝑘. That implies that the length of paths 𝛾 in 𝑈𝑘 are
comparable to the length of the paths 𝜑𝑘 ∘ 𝛾 in 𝜑𝑘(𝑈𝑘) ⊆ ℝ𝑛. Without loss of generality,
we assume that all geodesics between points of one chart domain lie within this chart
domain, for example by shrinking the chart domains to geodesic balls. We write 𝛾 ∶ 𝑥 ⇝ 𝑦
for paths from 𝑥 to 𝑦 and estimate

dist(𝑥, 𝑦) = inf
𝛾∶𝑥⇝𝑦

len(𝛾) ≤ inf
𝛾∶𝑥⇝𝑦

𝐶 len(𝜑𝑘 ∘ 𝛾)

= 𝐶 inf
𝛾∶𝜑𝑘(𝑥)⇝𝜑𝑘(𝑦)

len(𝛾) = 𝐶 |𝜑𝑘(𝑥) − 𝜑𝑘(𝑦)|

|𝜑𝑘(𝑥) − 𝜑𝑘(𝑦)| = inf
𝛾∶𝜑𝑘(𝑥)⇝𝜑𝑘(𝑦)

len(𝛾) ≤ inf
𝛾∶𝜑𝑘(𝑥)⇝𝜑𝑘(𝑦)

𝐶 len(𝜑−1
𝑘 ∘ 𝛾)

= 𝐶 inf
𝛾∶𝑥⇝𝑦

len(𝛾) = 𝐶 dist(𝑥, 𝑦) .

This shows that we can switch between |𝜑𝑘(𝑥) − 𝜑𝑘(𝑦)| and dist(𝑥, 𝑦) as long as 𝑥 and 𝑦
are in the same chart domain.

Now we can compare the double integral terms for some 𝑘 ∈ {1, …, 𝐾}. To estimate the
term 𝜂𝑘(𝑥)−𝜂𝑘(𝑦), use that the derivatives of the 𝜂𝑘 are bounded and therefore there exists
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a Lipschitz constant 𝐿 such that for all 𝑘 ∈ {1, …, 𝐾}, |𝜂𝑘(𝑥) − 𝜂𝑘(𝑦)| ≤ 𝐿 dist(𝑥, 𝑦).

∫
ℝ𝑛

∫
ℝ𝑛

∣(𝜂𝑘𝑢) ∘ 𝜑−1
𝑘 (𝑥) − (𝜂𝑘𝑢) ∘ 𝜑−1

𝑘 (𝑦)∣𝑞

|𝑥 − 𝑦|𝑡𝑞+𝑛 d𝑥 d𝑦

≤ 𝐶𝑡𝑞+𝑛 ∫
𝑈𝑘

∫
𝑈𝑘

|(𝜂𝑘𝑢)(𝑥) − (𝜂𝑘𝑢)(𝑦)|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑥) d𝑉𝑔(𝑦)

≤ 𝐶𝑡𝑞+𝑛 ∫
𝑈𝑘

∫
𝑈𝑘

|𝜂𝑘(𝑥)(𝑢(𝑥) − 𝑢(𝑦)) + (𝜂𝑘(𝑥) − 𝜂𝑘(𝑦))𝑢(𝑦)|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑥) d𝑉𝑔(𝑦)

≤ 𝐶𝑡𝑞+𝑛2𝑞−1 ∫
𝑈𝑘

∫
𝑈𝑘

|𝜂𝑘(𝑥)(𝑢(𝑥) − 𝑢(𝑦))|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛

+ |(𝜂𝑘(𝑥) − 𝜂𝑘(𝑦))𝑢(𝑦)|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑥) d𝑉𝑔(𝑦)

≤ 𝐶𝑡𝑞+𝑛2𝑞−1 (∫
𝑁

∫
𝑁

|(𝑢(𝑥) − 𝑢(𝑦))|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑥) d𝑉𝑔(𝑦)

+ ∫
𝑈𝑘

|𝑢(𝑦)|𝑞 ∫
𝑈𝑘

(𝐿 dist(𝑥, 𝑦))𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑥) d𝑉𝑔(𝑦)) (𝜂𝑘 ≤ 1)

= 𝐶𝑡𝑞+𝑛2𝑞−1 (∫
𝑁

∫
𝑁

|(𝑢(𝑥) − 𝑢(𝑦))|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑥) d𝑉𝑔(𝑦)

+𝐿𝑞 ∫
𝑈𝑘

|𝑢(𝑦)|𝑞 ∫
𝑈𝑘

dist(𝑥, 𝑦)𝑞(1−𝑡)−𝑛 d𝑉𝑔(𝑥) d𝑉𝑔(𝑦))

≤ 𝐶𝑡𝑞+𝑛2𝑞−1 (∫
𝑁

∫
𝑁

|(𝑢(𝑥) − 𝑢(𝑦))|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑥) d𝑉𝑔(𝑦)

+𝐿𝑞 ‖𝑢‖𝑞
𝐿𝑞 ∫

𝑁
(diam 𝑁)𝑞(1−𝑡)−𝑛 d𝑉𝑔(𝑥)) (𝑞(1 − 𝑡) − 𝑛 ≥ 0)

This shows that ‖𝑢‖𝜂,𝜑,𝑊 𝑡,𝑞 ≤ 𝐶′ ‖𝑢‖𝑊 𝑡,𝑞 for some 𝐶′ that does not depend on 𝑢.
Now we need an estimate for the opposite direction: estimate ‖𝑢‖𝑊 𝑡,𝑞 by ‖𝑢‖𝜂,𝜑,𝑊 𝑡,𝑞 .

Observe that for every 𝑥 ∈ 𝑁 there exist a function 𝜂𝑘 in the partition of unity that is
greater or equal to 1

𝐾 at 𝑥. Therefore we can partition 𝑁 in the following way:

𝑉𝑘 ∶= {𝑥 ∈ 𝑀 ∣ 𝜂𝑘 ≥ 1
𝐾

} \
𝑘−1
⋃
𝑖=1

𝑉𝑖 ⊆ 𝑈𝑘 .

Then 𝑉𝑘 is measurable, we have 𝐾𝜂𝑘|𝑉𝑘
≥ 1 for all 𝑘 ∈ {1, …, 𝐾} and ⋃𝐾

𝑘=1 𝑉𝑘 = 𝑁. We
estimate

∫
𝑁

∫
𝑁

|𝑢(𝑥) − 𝑢(𝑦)|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑦) d𝑉𝑔(𝑥)

≤
𝐾

∑
𝑘=1

∫
𝑉𝑘

∫
𝑁

𝐾𝜂𝑘(𝑥) |𝑢(𝑥) − 𝑢(𝑦)|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑦) d𝑉𝑔(𝑥)

= 𝐾
𝐾

∑
𝑘=1

∫
𝑉𝑘

∫
𝑁

|𝜂𝑘(𝑥)𝑢(𝑥) − 𝜂𝑘(𝑦)𝑢(𝑦) + 𝜂𝑘(𝑦)𝑢(𝑦) − 𝜂𝑘(𝑥)𝑢(𝑦)|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑦) d𝑉𝑔(𝑥)

≤ 𝐾2𝑞−1 (
𝐾

∑
𝑘=1

∫
𝑉𝑘

∫
𝑁

|(𝜂𝑘𝑢)(𝑥) − (𝜂𝑘𝑢)(𝑦)|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑦) d𝑉𝑔(𝑥)

28



+ ∫
𝑉𝑘

∫
𝑁

|(𝜂𝑘(𝑦) − 𝜂𝑘(𝑥))𝑢(𝑦)|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑦) d𝑉𝑔(𝑥)) (mean inequality)

≤ 𝐾2𝑞−1 (
𝐾

∑
𝑘=1

∫
𝑈𝑘

∫
𝑈𝑘

|(𝜂𝑘𝑢)(𝑥) − (𝜂𝑘𝑢)(𝑦)|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑦) d𝑉𝑔(𝑥)

+ ∫
𝑁

𝑢(𝑦)𝑞 ∫
𝑉𝑘

(𝐿 dist(𝑥, 𝑦))𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑥) d𝑉𝑔(𝑦))

≤ 𝐾2𝑞−1 (
𝐾

∑
𝑘=1

∫
𝑈𝑘

∫
𝑈𝑘

|(𝜂𝑘𝑢)(𝑥) − (𝜂𝑘𝑢)(𝑦)|𝑞

dist(𝑥, 𝑦)𝑡𝑞+𝑛 d𝑉𝑔(𝑦) d𝑉𝑔(𝑥)

+ 𝐿𝑞 ‖𝑢‖𝑞
𝐿𝑞 ∫

𝑁
(diam 𝑁)𝑞(1−𝑡)−𝑛 d𝑉𝑔(𝑥) d𝑉𝑔(𝑦)) (𝑉𝑘 ⊆ 𝑁)

In the last two steps we used the same estimate as in the previous calculation based on
the assumption 𝑞(1 − 𝑡) − 𝑛 ≥ 0.

Together with the estimate for ‖𝑢‖𝐿𝑞 , we have shown that ‖𝑢‖𝑊 𝑡,𝑞 ≤ 𝐶″ ‖𝑢‖𝜂,𝜑,𝑊 𝑡,𝑞 for
some 𝐶″ that does not depend on 𝑢. This concludes the proof.

Since smooth functions are dense in the fractional Sobolev spaces with any of the men-
tioned definitions, equivalent norms imply that the corresponding spaces are isomorphic.
Additionally to Lemma 3.18, [BW93] shows that the space 𝑊 𝑡,𝑞

𝜂,𝜑(𝑁, ℝ) does not depend
on the choice of the atlas and the partition of unity. So we know

𝑊 𝑡,𝑞(𝑁, ℝ) = 𝑊 𝑡,𝑞
𝜂,𝜑(𝑁, ℝ) = 𝑊 𝑡,𝑞

𝜂′,𝜑′(𝑁, ℝ)

for any two finite atlases 𝜑, 𝜑′ on 𝑁 with subordinate finite partitions of unity 𝜂, 𝜂′.
The definition of 𝑊 𝑡,𝑞 in [BW93] also differs from Definition 3.17 by using the Fourier

transform to define fractional Sobolev spaces on ℝ𝑛 instead of the Gagliardo–Slobodeckij
norm. Therefore, we need to take [NPV12] into account that shows that the definition
with the Fourier transform is equivalent to the one with the Gagliardo–Slobodeckij norm.
Note that the Fourier transform based definition is valid for any 𝑡 ≥ 0 whereas in the
definition via the norm as above 0 < 𝑡 < 1. For 𝑡 ∈ ℤ we use the usual Sobolev space
definition instead of Definition 3.17.

We conclude that we can apply the Trace Theorem 11.4 from [BW93]:

Theorem 3.20 (Trace theorem). Let 𝑀 be a compact Riemannian manifold as usual
and 𝑁 a (𝑚 − 1)-dimensional submanifold. Let 𝑡 ≥ 1

2 . Then the mapping 𝑢 ↦ 𝑢|𝑁 from
𝐶∞(𝑀, ℝ) to 𝐶∞(𝑁, ℝ) can be extended to the whole space 𝑊 𝑡,2(𝑀, ℝ) by continuity. It
provides a linear map Tr𝑁 ∶ 𝑊 𝑡,2(𝑀, ℝ) → 𝑊 𝑡− 1

2 ,2(𝑁, ℝ).

We use this theorem with 𝑡 = 1 and Tr𝑁 ∶ 𝑊 1,2(𝑀, ℝ) → 𝑊 1
2 ,2(𝑁, ℝ).

For ℝ𝑚-valued functions we consider every component separately. Hence, for an
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(𝑚 − 1)-dimensional submanifold 𝑁 of 𝑀, there exist continuous linear operators

Tr𝑁 ∶ 𝑊 1,2
q (𝑇 𝑀) → 𝑊

1
2 ,2
q (𝑇 𝑀|𝑁) (23)

with 𝑊
1
2 ,2
q (𝑇 𝑀|𝑁) ∶= {𝑋 ∈ Γℒ(𝑇 𝑀|𝑁) ∣ ⟨𝐵𝑖, 𝑋⟩𝑔 ∈ 𝑊 1

2 ,2(𝑁, ℝ) (𝑖 = 1, …, 𝑚)} (24)

Tr𝑁 ∶ 𝑊 1,2
q (𝒬𝑀) → 𝑊

1
2 ,2
q (𝒬𝑀|𝑁) (25)

with 𝑊
1
2 ,2
q (𝒬𝑀|𝑁) ∶= {𝑄 ∈ Γℒ(𝒬𝑀|𝑁) ∣ ⟨𝐵𝑖 ⊗ 𝐵𝑗, 𝑄⟩

𝑔
∈ 𝑊 1

2 ,2(𝑁, ℝ) (𝑖, 𝑗 = 1, …, 𝑚)}

(26)

agreeing with the usual restriction on continuous tensor fields.

4 Orientability of continuous line fields

The projection operator 𝑃 maps two opposite points on the sphere onto the corresponding
line. Compare this with the construction of the real projective space ℝℙ𝑑 (𝑑 ∈ ℕ): We
start with the sphere 𝕊𝑑 and identify opposite points. This construction also shows that
the sphere is a two-sheet covering space of ℝℙ𝑑. Similarly, 𝒬𝕊𝑀 is a fiber bundle with
fiber ℝℙ𝑚−1 and the projection 𝑃∶ 𝕊𝑀 → 𝒬𝕊𝑀 is a covering map.

Definition 4.1 (Covering map). (from Hatcher [1.3 Covering Spaces Hat01, p. 56])
A covering space of a topological space 𝑋 is a topological space �̃� together with a
map 𝑝∶ �̃� → 𝑋 satisfying the following condition: Each point 𝑥 ∈ 𝑋 has an open
neighborhood 𝑈 in 𝑋 such that 𝑝−1(𝑈) is a union of disjoint open sets in �̃�, each of
which is mapped homeomorphically onto 𝑈 by 𝑝. The disjoint open sets in �̃� that project
homeomorphically to 𝑈 by 𝑝 are called sheets of �̃� over 𝑈. ◀

Algebraic geometry can characterise orientable continuous line fields. In the language
of algebraic topology an orientation of a line field is a lift from a map into 𝒬𝕊𝑀 to a map
into the covering space 𝕊𝑀. In this chapter we specialise the theory of lifts to our case
of line fields. This generalises a result by Ball and Zarnescu [BZ11, Theorem 1].

Since we want to lift from 𝒬𝕊𝑀 to 𝕊𝑀, we need to check if 𝑃∶ 𝕊𝑀 → 𝒬𝕊𝑀 is a
covering map.

Lemma 4.2 (Projection as a covering map). The projection operators 𝑃∶ 𝕊𝑀 → 𝒬𝕊𝑀
and 𝑃𝑁 ∶ 𝕊𝑁−1 → 𝒬𝕊′ℝ𝑁 (𝑁 ∈ ℕ) are covering maps with two sheets.

Proof. 𝑃 is continuous since 𝑛 ↦ 𝑠 (𝑛 ⊗ 𝑛 − 1
𝑚𝑔♯♯) (𝑚 = dim 𝑀) is continuous as a map

from 𝑇 𝑀 to 𝑇 (2,0)𝑇 𝑀. 𝑃𝑁 is continuous since 𝑛 ↦ 𝑛 ⊗ 𝑛 is continuous as a map from
𝕊𝑁−1 to 𝑇 (2,0)ℝ𝑁. For 𝑛 ∈ 𝕊𝑀 or 𝕊𝑁−1 choose a neighborhood 𝑈 that has a diameter of
less than 2 (measured in 𝑇 𝑀 or ℝ𝑁 respectively). Then, 𝑃 −1(𝑃 (𝑈)) = 𝑈 ∪ −𝑈 (same
for 𝑃𝑁) and 𝑈 and −𝑈 are disjoint because the distance between opposite points is 2.
Since 𝑃 and 𝑃𝑁 are quadratic, they have continuous inverses if they are bijective. Hence
they map 𝑈 and −𝑈 homeomorphically onto 𝑃(𝑈).

We want to use Proposition 1.33 from [Hat01] from algebraic topology. This is also
called the ‘Lifting Lemma’.
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Theorem 4.3 (Lifting of continuous maps). Suppose given a connected covering space
𝑝∶ (�̃�, ̃𝑥0) → (𝑋, 𝑥0) and a map 𝑓∶ (𝑌 , 𝑦0) → (𝑋, 𝑥0) with 𝑌 path-connected and locally
path-connected. Then a lift ̃𝑓 ∶ (𝑌 , 𝑦0) → (�̃�, ̃𝑥0) of 𝑓 exists if and only if 𝑓∗ (𝜋1(𝑌 , 𝑦0)) ⊆
𝑝∗ (𝜋1(�̃�, ̃𝑥0)).

The spaces in this theorem are pointed spaces. They are equipped with one distinguished
point which is used to define the fundamental group 𝜋1. 𝜋1 is the group of equivalence
classes of loops through this point. Loops are equivalent if and only if they are homotopic.
The notation 𝑓∗ denotes the induced homomorphism defined by 𝑓∗([𝛼]) = [𝑓 ∘ 𝛼] where 𝛼
is a loop in the domain of 𝑓 and [𝛼] is the homotopy equivalence class of 𝛼.

We use Theorem 4.3 to formulate a condition for the orientability of a continuous line
field: we can check orientability on a selected number of loops. To define the spaces of
line and unit vector fields we need a notation for restrictions of fields to submanifolds.
Denote the space of sections of regularity 𝑅 of the fiber bundle 𝐸 on the submanifold
𝑁 ⊂ 𝑀 as Γ𝑅(𝐸|𝑁).

Theorem 4.4 (Orientability of continuous line fields). Consider a continuous line
field 𝑄 ∈ Γ𝐶(𝒬𝕊𝑀). Let 𝐺 be a set of loops at a common point 𝑝0 that generate the
fundamental group 𝜋1(𝑀, 𝑝0). 𝑄 is orientable, i. e. there exists 𝑛 ∈ Γ𝐶(𝕊𝑀) such that
𝑃(𝑛) = 𝑄, if and only if 𝑄 is orientable along every path 𝛾 ∈ 𝐺.

We formulate the same in the language of Section 3.2 and allow fields that are not
tangent to 𝑀.

Lemma 4.5 (Orientability of continuous line fields via embedding of 𝑀). Let 𝜄 be an
isometric embedding of 𝑀 into ℝ𝑁 as in Section 3.2 and let 𝑄 ∈ 𝐶(𝑀, 𝒬𝕊′ℝ𝑁) be a line
field on but not necessarily tangent to 𝑀. Let 𝐺 be a set of loops on 𝑀 at a common
point 𝑝0 that generate the fundamental group 𝜋1(𝑀, 𝑝0). Then, 𝑄 is orientable, i. e. there
exists 𝑛 ∈ 𝐶(𝕊𝑁−1) such that 𝑃𝑁(𝑛) = 𝑄, if and only if 𝑄 is orientable along every path
𝛾 ∈ 𝐺.

Theorem 4.4 and Lemma 4.5 are very similar. Therefore the proofs are combined.
Parts in pink are for Theorem 4.4and parts in yellow are for Lemma 4.5. Additionally
exchange 𝕊𝑀 with 𝕊𝑁−1 and 𝑃 with 𝑃𝑁 for the proof of Lemma 4.5.

Proof. As Lemma 4.2 shows, 𝑃∶ 𝕊𝑀 → 𝒬𝕊𝑀𝑃𝑁 ∶ 𝕊𝑁−1 → 𝒬𝕊′ℝ𝑁 is a covering map. Use
𝑄𝑝0

and an 𝑛0 ∈ 𝕊𝑀 with 𝑃(𝑛0) = 𝑄𝑝0
as the distinguished points.

Connected manifolds are path-connected and locally path-connected.
For the ‘if’ part let 𝛾 ∈ 𝐺, i. e. 𝛾∶ [0, 1] → 𝑀 continuous with 𝛾(0) = 𝛾(1) = 𝑝0. 𝑄

is orientable along 𝛾. That means that there exists 𝑛 ∈Γ𝐶(𝕊𝑀|𝛾([0,1]))𝐶(𝛾([0, 1]), 𝕊𝑁−1)
with 𝑃(𝑛) = 𝑄. If the orientation of 𝑄 along this path has 𝑛(𝛾(0)) = −𝑛0, use −𝑛 instead.
Then, 𝑛 ∘ 𝛾 is a continuous loop at 𝑛0 in 𝕊𝑀 with 𝑃∗[𝑛 ∘ 𝛾] = [𝑃 ∘ 𝑛 ∘ 𝛾] = [𝑄 ∘ 𝛾] = 𝑄∗[𝛾].
Since 𝛾 is an arbitrary generator of 𝜋1(𝑀, 𝑝0) and 𝑄∗ and 𝑃∗ are group homomorphisms,
we get that 𝑄∗(𝜋1(𝑀, 𝑝0)) ⊆ 𝑃∗(𝜋1(𝕊𝑀, 𝑛0)). Hence there exists 𝑛 ∈ 𝐶(𝑀, 𝕊𝑀) with
𝑃(𝑛) = 𝑄 by Theorem 4.3, i. e. 𝑄 is orientable and 𝑛 ∈ Γ𝐶(𝕊𝑀).

For the ‘and only if’ part restrict an orientation for 𝑄 on the paths in 𝐺.

Corollary 4.6 (Orientability on simply connected manifolds). If 𝑀 is simply connected
every continuous line field 𝑄 ∈ Γ𝐶(𝒬𝕊𝑀) or 𝑄 ∈ 𝐶(𝑀, 𝒬𝕊′ℝ𝑁) is orientable.

31



Proof. 𝑀 being simply connected means that 𝜋1(𝑀, 𝑝0) is the trivial group for any point
𝑝0 ∈ 𝑀. Hence it has no generators. Therefore the assumption in Theorem 4.4 or
Lemma 4.5 is trivially fulfilled.

Remark 4.7 (Topological restriction on the manifold). Hopf [Hop27] showed that the
existence of unit vector fields is a topological property of the manifold. There exists
a unit vector fields on a smooth, compact manifold without boundary if and only if
the Euler characteristic is zero. This result is called the Poincaré-Hopf Theorem. For
surfaces–two-dimensional manifolds–without boundary this implies that the only one
with unit vector fields is the torus. For all other compact boundaryless surfaces the
question of orientability of continuous line fields is uninteresting.
Example 4.8 (Sphere). The sphere 𝕊2 is simply connected but has Euler characteristic 2.
Therefore every continuous line field is orientable but there exist no continuous unit
vector fields and hence no continuous line fields.

On the 2-sphere the Poincaré-Hopf Theorem is called Hairy Ball Theorem [EG79].
Since the sphere and distorted spheres are a very common object of study and real-life

application many applications circumvent this problem in some way. Usually the fields
have point defects which are points on the sphere where the line or unit vector field is not
well-defined or zero. For example Napoli and Vergori [NV12] study tiny droplets with
liquid crystals on the surface. Since the liquid crystal layer is so thin in comparison to the
size of the droplet it can be modeled as two-dimensional. Then, the liquid crystal must
have defects that influence the properties of the entire droplet like bonds to neighboring
particles.
Example 4.9 (Circle). The natural question that arises from Theorem 4.4 is if the
converse is also true, i. e. if we can find a non-orientable line field on every manifold that
is not simply connected.

In this simple form the converse is not true. To see this, consider the circle 𝕊1. 𝑇𝑝𝕊1

is one-dimensional at every 𝑝 ∈ 𝕊1. Therefore 𝕊𝕊1 consists of only two vectors at every
base point and 𝒬𝕊𝕊1 even only of one element. Therefore there is only exactly one line
field on the sphere and it is orientable.

We will also look at the one example of a boundaryless two-dimensional compact
manifold with unit vector fields and construct a non-orientable line field: a torus. In
order to show that a line field is indeed non-orientable we have to understand ‘how it
can fail’. Indeed, if we look at paths that are not loops but injective, every line field can
be oriented. In the flat case this was done in Lemma 3 of [BZ11] and we will reduce the
manifold case to this.

Proposition 4.10 (Orientability on a path). Let 𝛾∶ [0, 1] → 𝑀 be a continuous injective
path on 𝑀 and 𝑄 ∈ Γ𝐶 (𝒬𝕊𝑀∣

𝛾([0,1])
) be a continuous line field along the path 𝛾. Then,

there exist exactly two orientations 𝑛+ and 𝑛− ∈ Γ𝐶(𝕊𝑀|𝛾([0,1])) such that

𝑄𝛾(𝑡) = 𝑃 (𝑛±
𝛾(𝑡)) for all 𝑡 ∈ [0, 1]

and 𝑛− = −𝑛+. Equivalently, given either of the two possible initial orientations at 𝛾(0),
there exists a unique continuous orientation with this initial orientation.

Proof. We use the parallel transport of 𝛾 to transform 𝑄 to a line field that maps from
[0, 1] to 𝒬𝕊

𝛾(0)𝑀:
�̃�(𝑡) ∶= Par𝛾

𝑡0 𝑄𝛾(𝑡) .
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For a definition of the parallel transport along 𝛾 from 𝛾(𝜏) to 𝛾(𝑡) see Theorem 4.32 in
[Lee18]. Since 𝑃 𝛾

𝑡0 is a linear isometry, it maps 𝒬𝕊
𝛾(𝑡)𝑀 to 𝒬𝕊

𝛾(0)𝑀. Hence �̃� maps from
[0, 1] to 𝒬𝕊

𝛾(0)𝑀. By choosing an orthonormal basis for 𝒬𝕊
𝛾(0)𝑀 we can identify it with the

space 𝒬 as it is used by Ball and Zarnescu [BZ11]. Note that 𝑔 written in an orthonormal
basis is the identity matrix used in the definition of 𝑃 used in [BZ11]. Furthermore the
parallel transport Par𝛾

𝑡𝑡0
commutes with the projection 𝑃 which is clear when writing 𝑛

and 𝑃(𝑛) in coordinates with respect to an orthonormal frame transported by Par𝛾
0𝑡.

With this construction the statement follows directly from Lemma 3 in [BZ11]. Note
that [BZ11] formally only considers the case 𝑚 = 3 but the proof generalises trivially to
any dimension.

𝑥

𝑦

Figure 6: The (uncontinuous) unit vector field 𝑛(𝑥, 𝑦) = cos (𝜋
2 𝑥) 𝜕

𝜕𝑥 + sin (𝜋
2 𝑥) 𝜕

𝜕𝑦 on the
flat torus 𝕋2. The colored edges of the square indicate which sides are identified
to turn [0, 1]2 into 𝕋2.

Example 4.11 (Torus). There exist line and unit vector fields on the torus and it is not
simply connected. Therefore it is a candidate surface to exhibit non-orientable line fields.
In order to construct a non-orientable line field we take a loop that is not contractable,
for example a circle around the hole. Call it 𝛾∶ [0, 1] → 𝑀. We know by Proposition 4.10
that any line field can be oriented along a path. Hence on 𝛾([0, 1)) we can find an
orientation and thus the problem must occur at 𝛾(0) = 𝛾(1) and 𝑄 must somehow force
the oriented version 𝑛 to ‘turn around’ along the curve. After defining 𝑄 suitably on this
loop we also have to check if we can extend it to all of 𝑀.

For simple computation use the square [−1, 1]2 with opposite sides identified as a
model for the torus. Define the discontinuous unit vector field 𝑛(𝑥, 𝑦) ∶= cos (𝜋

2 𝑥) 𝜕
𝜕𝑥 +

sin (𝜋
2 𝑥) 𝜕

𝜕𝑦 . It is continuous on (−1, 1)2 and 𝑛(0, 𝑦) = −𝑛(1, 𝑦) and 𝑛(𝑥, 0) = 𝑛(𝑥, 1)
for all 𝑥, 𝑦 ∈ [0, 1]. Hence 𝑄 ∶= 𝑃(𝑛) is continuous on the entire torus but on the path
𝛾∶ [0, 1] → 𝑀 with 𝛾(𝑡) = (𝑡, 0) an orientation of 𝑄 it must be equal to 𝑛 (or −𝑛) on
(0, 1) but then is discontinuous at 𝛾(0) = 𝛾(1). In Figure 6 𝛾 can be any path parallel to
the 𝑥-axis.
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5 Orientability of Sobolev line fields
Since algebraic topology is only concerned with continuous maps, it has no tools to
directly study Sobolev line fields. Instead we use approximation results that help to reduce
the orientability question to continuous fields. Smooth functions between manifolds are
in general not dense in the Sobolev function space, though. Therefore we will use two
specialised density results for the simply-connected case (Theorem 5.1 in Section 5.1)
and for surfaces (Theorem 5.11 in Section 5.2).

5.1 Orientability on simply-connected manifolds

If 𝑀 is simply-connected, smooth fields are in general not dense in the norm sense but in
a weak sense as Pakzad and Rivière [PR03] showed.

Theorem 5.1 (Sequentially weak density of smooth maps between manifolds). ([Theorem
I PR03, p. 225]) Let 𝑀, 𝑁 be compact smooth manifolds with 𝑀 simply connected. The
Sobolev space 𝑊 1,2(𝑀, 𝑁) is defined as {𝑓 ∈ 𝑊 1,2(𝑀, ℝ𝑑) ∣ 𝑓 ∈ 𝑁 a. e.} where 𝑁 is
embedded isometrically into ℝ𝑑. The norm is inherited from 𝑊 1,2(𝑀, ℝ𝑑). Then for
𝑢 ∈ 𝑊 1,2(𝑀, 𝑁), there exists a sequence (𝑢(𝑘))𝑘 with 𝑢(𝑘) ∈ 𝐶∞(𝑀, 𝑁) for all 𝑘 ∈ ℕ,
such that 𝑢(𝑘) converges weakly to 𝑢.

To use Theorem 5.1 we need to show that the weak limit of orientable continuous
approximations is also orientable.

Proposition 5.2 (Orientability preserved by weak convergence). Let 𝑞 ∈ [1, ∞) and

𝑄(𝑘) ∈ 𝑊 1,𝑞(𝑀, 𝒬𝕊′ℝ𝑁) for 𝑘 ∈ ℕ,

𝑄(𝑘) ⇀ 𝑄 ∈ 𝑊 1,𝑞(𝑀, 𝒬𝕊′ℝ𝑁) as 𝑘 → ∞,
and 𝑄(𝑘) = 𝑃𝑁(𝑛(𝑘)) with 𝑛(𝑘) ∈ 𝑊 1,𝑞(𝑀, 𝕊𝑁−1) for 𝑘 ∈ ℕ.

Then there exists 𝑛 ∈ 𝑊 1,𝑞(𝑀, 𝕊𝑁−1) with 𝑃𝑁(𝑛) = 𝑄(𝑛).

If additionally 𝜄 ∶ 𝑀 ↪ ℝ𝑁 is an isometric embedding of 𝑀 as in Section 3.2, and
𝑄 ∈ Γ𝑊 1,𝑞(𝒬𝕊′𝑀) is tangent to 𝑀, then 𝑛 ∈ Γ𝑊 1,𝑞(𝕊𝑀) is also tangent to 𝑀.

Proof. In order to get a weak limit of the 𝑛(𝑘)’s we need to show that the sequence is
bounded. For this, calculate the Euclidean derivative ∇𝑣�̂� for �̂� weakly differentiable, a
direction 𝑣 ∈ 𝑇 𝑀 in terms of �̂� = 𝑃𝑁(�̂�). Note that in ℝ𝑁 the musical operators ♯ and
♭ are given by transposition ·𝑇. The vector �̂� and the contravariant tensor �̂� are here
interpreted as (bi)linear maps on one and two covectors, respectively.

As a preparation, note that �̂� · �̂� = |�̂�|2 = 1 and therefore,

0 = 1
2

∇𝑣(�̂� · �̂�) = 1
2

(∇𝑣�̂�) · �̂� + 1
2

�̂� · (∇𝑣�̂�) = ∇𝑣�̂� · �̂� = ∇𝑣�̂�(�̂�𝑇) . (27)

Then,

∇𝑣�̂�(�̂�𝑇, ·) = ∇𝑣 (�̂� ⊗ �̂�) (�̂�𝑇)
= (∇𝑣�̂�)(�̂�𝑇) ⊗ �̂� + �̂�(�̂�𝑇) ⊗ ∇𝑣�̂� (28)
= ∇𝑣�̂� ((27) and �̂�(�̂�𝑇) = �̂� · �̂� = 1) .
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Hence, ∇�̂� is in 𝐿𝑞. Since also |�̂�| = 1 and 𝑀 is compact, �̂� ∈ 𝑊 1,𝑞(𝑀, 𝕊𝑁−1) and the
norm of �̂� is bounded by the norm of �̂�.

Since (𝑄(𝑘))𝑘 converges weakly, it is a bounded sequence by the Uniform Boundedness
Principle. Therefore, the previous calculation (28) shows that (𝑛(𝑘))𝑘 is bounded as well.
The Banach-Alaoglu Theorem further gives a subsequence (𝑛(𝑘𝑙))𝑙 of (𝑛(𝑘))𝑘 that weakly
converges to some 𝑛 ∈ 𝑊 1,𝑞(𝑀, ℝ𝑁). By the Kondrakov Theorem [§11 2.34 Theorem
Aub82] 𝑊 1,𝑞(𝑀, ℝ𝑁) is compactly embedded in 𝐿𝑞(𝑀, ℝ𝑁). Therefore, we can find a
further subsequence (𝑛(𝑘𝑠))𝑠 of (𝑛(𝑘𝑙))𝑙 that converges in 𝐿𝑞-norm and therefore pointwise
a. e.. The same reason shows that (𝑄(𝑘𝑠))𝑠 has a subsequence that converges pointwise
a. e. and hence 𝑃𝑁(𝑛) = 𝑄, i. e. 𝑄 is orientable.

It remains to be shown that 𝑛 is tangent to 𝑀 if 𝑄 is tangent to 𝑀. For the sake of
contradiction, assume 𝑛𝑝 · 𝜂 = 𝑛𝑝(𝜂𝑇) ≠ 0 for some 𝑝 ∈ 𝑀 and 𝜂⊥𝑇𝑝𝑀. Then

𝑃𝑁(𝑛)(𝜂𝑇, 𝜂𝑇) = 𝑄(𝜂𝑇, 𝜂𝑇) = (𝑛 ⊗ 𝑛)(𝜂𝑇, 𝜂𝑇) = (𝑛(𝜂𝑇))2 ≠ 0 .

If 𝑄 is tangent to 𝑀, i. e. 𝑄 ∈ Γ𝑊 1,𝑞(𝒬𝕊′𝑀), this is false a. e.. Hence 𝑛 ∈ Γ𝑊 1,𝑞(𝕊𝑀) is
a. e. tangent to 𝑀.

Remark 5.3 (Choice of codomain). If we only used the intrinsic definition of the tensor
fields it would be unclear how to use Theorem 5.1. If we used it with 𝑁 = 𝒬𝕊𝑀, we
could not guarantee that it holds for the approximations that (𝑄(𝑘))𝑝 ∈ 𝑇𝑝𝑀. If we
used it with 𝑁 = 𝒬𝕊

𝑝𝑀 we have to somehow identify all tangent spaces which is–in the
general case–not possible in a smooth way. By embedding 𝑀 and allowing non-tangent
approximations, we solve this problem but need Corollary 4.6 and Proposition 5.2 for
𝒬𝕊′ℝ𝑁- and 𝕊𝑁−1-valued functions.

Theorem 5.4 (Sobolev orientability on simply connected manifolds). If 𝑀 is simply-
connected, every Sobolev line field 𝑄 ∈ Γ𝑊 ∇,𝑞(𝒬𝕊𝑀) is orientable for 𝑞 ∈ [2, ∞), i. e.
there exists 𝑛 ∈ Γ𝑊 ∇,𝑞(𝕊𝑀) with 𝑃(𝑛) = 𝑄.

Proof. By the Nash embedding theorem [Nas56] we can embed the base manifold 𝑀
isometrically into ℝ𝑁 for some 𝑁 ∈ ℕ. As usual we call this embedding 𝜄.

Since 𝑀 is compact and 𝑞 ≥ 2, the line field 𝑄 is also in the Sobolev space with
exponent 2: 𝑄 ∈ Γ𝑊 ∇,2(𝒬𝕊𝑀). By Lemma 3.13 we can view 𝑄 as a map into the
surrounding Euclidean space: 𝜄𝒬(𝑄) ∈ 𝑊 1,2(𝑀, 𝒬𝕊′ℝ𝑁). The codomain 𝒬𝕊′ℝ𝑁 is a
model for ℝℙ𝑁−1 as mentioned in Section 4 and hence a smooth compact manifold.
Therefore, by Theorem 5.1, there exists a sequence (𝑄(𝑘))𝑘 in 𝐶∞(𝑀, 𝒬𝕊′ℝ𝑁) converging
weakly to 𝜄𝒬(𝑄). By Corollary 4.6, 𝑄(𝑘) is orientable for all 𝑘 ∈ ℕ with 𝑃(𝑛(𝑘)) = 𝑄(𝑘)
and 𝑛(𝑘) ∈ 𝐶(𝑀, 𝕊𝑁−1).

By Lemma 3.11 the orientations 𝑛(𝑘) ∈ 𝑊 1,2(𝑀, 𝕊𝑁−1) are also weakly differentiable.
Now we apply Proposition 5.2. It shows that 𝜄𝒬(𝑄) is orientable with 𝑃𝑁(𝑛) = 𝜄𝒬(𝑄)

and 𝑛 ∈ 𝑊 1,2(𝕊𝑀). The calculation (28) gives a formula for ∇𝑛 that shows that ∇𝑛 is
also in 𝐿𝑞 since ∇𝜄∗(𝑄) is in 𝐿𝑞. Transferring 𝑛 back with 𝜄−1

∗ , we get 𝑃(𝜄−1
∗ 𝑛) = 𝑄, i. e.

𝑄 is orientable.

5.2 Orientability on surfaces
As mentioned in the introduction liquid crystals exist in some cases like [Keb+14] as
very thin films that are best modelled as two-dimensional surfaces. Therefore, the case
dim 𝑀 = 2 is of special interest. Section 4 of [BZ11] gives a roadmap how to transfer the
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orientability criterion from continuous to Sobolev line fields. In order to use those ideas,
we use that the tangent bundle is trivial in the case of oriented surfaces with unit vector
fields. This allows us to consider vector fields as maps into ℝ2 as discussed in Section 3.3.
Unorientable surfaces are shortly discussed in the outlook 7.

Lemma 5.5 (Triviality of two dimensions). Let 𝑀 be a compact orientable surface.
Then, either 𝑀 admits no smooth unit tangent field or has a global orthonormal frame.

The prominent example of a manifold without unit tangent field is the sphere by the
Hairy Ball theorem [EG79]. A manifold with a global frame is called parallelizable and
its tangent bundle is called trivial. Any global frame can be orthonormalized to an
orthonormal global frame with the Gram-Schmidt process.

Proof. If 𝑀 admits no smooth unit tangent field, we are done. Otherwise take some
𝑋 ∈ Γ𝐶∞(𝕊𝑀) and choose an orientation for 𝑀. Then, in each point 𝑝 ∈ 𝑀, the
orthogonal complement 𝑋⊥

𝑝 is a one-dimensional subspace. It contains exactly two unit
vectors. Exactly one of them forms a positively oriented basis of 𝑇𝑝𝑀 with 𝑋𝑝, call it 𝑌𝑝.
Since 𝑋 is smooth and 𝑀 is orientable, 𝑌 is also smooth.

Similarly to Section 3.3, we assume throughout this subsection that 𝑀 is a com-
pact orientable surface and choose a global smooth orthonormal frame (𝐵1, 𝐵2) ∈
(Γ𝐶∞(𝕊𝑀))2. We write 𝑊 1,2

q (𝕊𝑀) and 𝑊 1,2
q (𝒬𝕊𝑀) but everything holds for Γ𝑊 ∇,2(𝕊𝑀)

and Γ𝑊 ∇,2(𝒬𝕊𝑀) as well since the spaces are isomorphic as shown in Lemma 3.16. Note
that |𝑛|𝑔 = 1 is equivalent to ∣( ⟨𝐵1, 𝑛⟩𝑔 , ⟨𝐵2, 𝑛⟩𝑔 )𝑇∣ = 1 since (𝐵1, 𝐵2) is orthonormal.

The goal is to show that orientability of a line field on a surfaces is equivalent to
orientability of the line field on a set of loops that generate the fundamental group. While
Section 5.2.1 shows that an orientable line field on the entire surface is orientable on the
generators, Section 5.2.2 shows the opposite direction.

5.2.1 Orientability from the surface to loops

The easier direction is to show that an orientable line field is also orientable on loops.
Indeed, this is possible in any dimension and for non-trivial tangent bundles but this
would require yet another way of defining Sobolev vector fields that is compatible with
fractional Sobolev vector fields and the trace theorem. It would extend this thesis more
than it would give insight.

The continuous case is trivial since the chosen orientation can simply be restricted to
the loop. In the Sobolev case the trace is defined via approximation and hence it needs
to be shown that orientability is stable under this approximation. For this we need to
show that the projection 𝑃 is continuous.

Lemma 5.6 (Continuity of projection on surface). For 𝑞 ∈ [1, ∞),

𝑃∶ {𝑛 ∈ 𝑊 1,𝑞
q (𝑇 𝑀) ∣ |𝑛|𝑔 ≤ 1} → 𝑊 1,𝑞

q (𝒬𝑀)

is well-defined and continuous. Here 𝑃 is defined on a larger domain but in the usual
way (𝑃 (𝑛))𝑝 ∶= 𝑠 (𝑛𝑝 ⊗ 𝑛𝑝 − 1

2𝑔♯♯
𝑝 ) for 𝑝 ∈ 𝑀.

Proof. 𝒬𝑀 is defined just such that 𝑃(𝑛) maps into 𝒬𝑀. To show that 𝑃(𝑛) ∈ 𝑊 1,𝑞
q (𝒬𝑀)

and that 𝑃 is continuous, calculate ‖𝑃 (𝑛)‖𝑞
𝑊 1,𝑞

q
in terms of ‖𝑛‖𝑞

𝑊 1,𝑞
q

. To simplify notation,
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let 𝑛𝑖 ∶= ⟨𝐵𝑖, 𝑛⟩𝑔 and 𝑄 ∶= 𝑃(𝑛) with 𝑄𝑖𝑗 ∶= ⟨𝐵𝑖 ⊗ 𝐵𝑗, 𝑄⟩
𝑔

for 𝑖, 𝑗 ∈ {1, 2}.

𝑄𝑖𝑗 = ⟨𝐵𝑖 ⊗ 𝐵𝑗, 𝑠(𝑛 ⊗ 𝑛 − 1
2

𝑔♯♯)⟩
𝑔

= 𝑠 ⟨𝐵𝑖, 𝑛⟩𝑔 ⟨𝐵𝑗, 𝑛⟩
𝑔

− 𝑠
2

𝑔(𝐵𝑖, 𝐵𝑗) = 𝑠𝑛𝑖𝑛𝑗 − 𝑠
2

𝛿𝑖𝑗

∇𝑄𝑖𝑗 = 𝑠 ((∇𝑛𝑖)𝑛𝑗 + 𝑛𝑖(∇𝑛𝑗))

Since |𝑛|𝑔 is bounded by 1, it follows that ‖𝑄‖𝑊 1,𝑞
q

is finite, so 𝑃 is well-defined. Now we

estimate the difference 𝑄 − �̃� ∶= 𝑃(𝑛) − 𝑃(�̃�) for 𝑛, �̃� ∈ 𝑊 1,𝑞
q (𝕊𝑀).

𝑄𝑖𝑗 − �̃�𝑖𝑗 = 𝑠 (𝑛𝑖𝑛𝑗 − 1
2

𝛿𝑖𝑗 − �̃�𝑖�̃�𝑗 + 1
2

𝛿𝑖𝑗)

= 𝑠( (𝑛𝑖 − �̃�𝑖)⏟
→0

𝑛𝑗⏟
≤1

+ (𝑛𝑗 − �̃�𝑗)⏟
→0

�̃�𝑖⏟
≤1

) → 0 in 𝐿𝑞

∇𝑄𝑖𝑗 − ∇�̃�𝑖𝑗 = 𝑠 ((∇𝑛𝑖)𝑛𝑗 + 𝑛𝑖(∇𝑛𝑗) − (∇�̃�𝑖)�̃�𝑗 − �̃�𝑖(∇�̃�𝑗))
= 𝑠( (∇𝑛𝑖 − ∇�̃�𝑖)⏟⏟⏟⏟⏟

→0

𝑛𝑗⏟
≤1

+ (∇𝑛𝑗 − ∇�̃�𝑗)⏟⏟⏟⏟⏟
→0

�̃�𝑖⏟
≤1

+ 2(∇𝑛𝑗)⏟
∈𝐿𝑞

(𝑛𝑖 − �̃�𝑖)⏟
→0

+ (∇�̃�𝑖 − ∇𝑛𝑖)⏟⏟⏟⏟⏟
→0

(𝑛𝑗 − �̃�𝑗)⏟
→0

)

→ 0 in 𝐿𝑞 as �̃� → 𝑛 in 𝑊 1,𝑞
q

The second to last term goes to zero by the dominated convergence theorem with ∣4∇𝑛𝑗∣
as the dominating integrable function. We see that ‖𝑃 (𝑛) − 𝑃(�̃�)‖𝑊 1,𝑞

q
goes to zero if

‖𝑛 − �̃�‖𝑊 1,𝑞
q

goes to zero. Hence 𝑃 is continuous.

Proposition 5.7 (Orientability on loops). Let 𝑁 ⊂ 𝑀 be a 1-dimensional submanifold
of 𝑀 and let 𝑄 ∈ 𝑊 1,2

q (𝒬𝕊𝑀) be orientable with 𝑃(𝑛) = 𝑄 and 𝑛 ∈ 𝑊 1,2
q (𝕊𝑀). Then,

Tr𝑁 𝑄 is orientable with 𝑃(Tr𝑁 𝑛) = Tr𝑁 𝑄 ∈ 𝑊 1
2 ,2(𝒬𝕊𝑀∣

𝑁
).

Proof. The Meyers-Serrin density result Theorem 3.8 gives an approximating sequence
𝑛(𝑘) ∈ 𝐶∞

q (𝑇 𝑀) with ∣𝑛(𝑘)∣𝑔 ≤ ‖𝑛‖𝐿∞ = 1 that converges in 𝑊 1,2 to 𝑛. We showed that
𝑃 is continuous in the previous Lemma 5.6. and thus 𝑃(𝑛(𝑘)) → 𝑃(𝑛) = 𝑄. Since the
𝑛(𝑘)’s are smooth, the trace operator on the 𝑛(𝑘)’s is just restriction and thus trivially
commutes with 𝑃:

𝑃(Tr𝑁 𝑛(𝑘)) = Tr𝑁 𝑃(𝑛(𝑘)) → Tr𝑁 lim
𝑘→∞

𝑃(𝑛(𝑘)) = Tr𝑁 𝑄 in 𝑊 1
2 ,2(𝒬𝑀|𝑁) .

The right hand side Tr𝑁 𝑃(𝑛(𝑘)) converges because Tr𝑁 is continuous, see Theorem 3.20.
On the left hand side we notice that Tr𝑁 𝑛(𝑘) are also 𝐿2(𝑇 𝑀|𝑁)-functions. Tr𝑁 is
also continuous as an operator from 𝑊 1,2 to 𝐿2 and thus Tr𝑁 𝑛(𝑘) converges to Tr𝑁 𝑛.
Recalling the previous proof of Lemma 5.6 we see that 𝑃 is also continuous on 𝐿2 and
hence 𝑃(Tr𝑁 𝑛(𝑘)) → 𝑃(Tr𝑁 𝑛) in 𝐿2. This shows 𝑃(Tr𝑁 𝑛) = Tr𝑁 𝑄.

In order to show that 𝑄 is orientable, we still need to show that Tr𝑁 𝑛 ∈ 𝑊 1,2
q (𝕊𝑀),

i. e. |𝑛| = 1 a. e. on 𝑀. We use Theorem 5.7 of [EG15]. It states that

lim
𝑟→0

1
|𝐵(𝑥, 𝑟) ∩ 𝑀|

∫
𝐵(𝑥,𝑟)∩𝑀

|𝑛(𝑦) − Tr𝑁 𝑛(𝑥)| d𝑦 = 0 for almost all 𝑥 ∈ 𝑁 .

37



It is proven for Euclidean domains but since it is a local property it also holds on
manifolds. Now

1 − |Tr𝑁 𝑛(𝑥)| = 1
|𝐵(𝑥, 𝑟) ∩ 𝑀|

∫
𝐵(𝑥,𝑟)∩𝑀

|1 − |Tr𝑁 𝑛(𝑥)|| d𝑦

= 1
|𝐵(𝑥, 𝑟) ∩ 𝑀|

∫
𝐵(𝑥,𝑟)∩𝑀

||𝑛(𝑦)| − |Tr𝑁 𝑛(𝑥)|| d𝑦

≤ 1
|𝐵(𝑥, 𝑟) ∩ 𝑀|

∫
𝐵(𝑥,𝑟)∩𝑀

|𝑛(𝑦) − Tr𝑁 𝑛(𝑥)| d𝑦 → 0 (a. e. as 𝑟 → 0)

and hence |Tr𝑁 𝑛| = 1 a. e. on 𝑁.

5.2.2 Orientability from loops to the surface

We can to view the ‘squaring’ 𝑛 ⊗ 𝑛 in the projection 𝑄 = 𝑃(𝑛) = 𝑠 (𝑛 ⊗ 𝑛 − 1
2𝑔) as

an actual squaring operation by identifying the codomain 𝕊1 with the unit circle in the
complex plane ℂ.

Definition 5.8 (Complex version of line field). We define the following auxiliary com-
plex valued functions for 𝑄 ∈ 𝑊 1,2

q (𝒬𝕊𝑀) and 𝑛 ∈ 𝑊 1,2
q (𝕊𝑀) with the coordinates

𝑄𝑖𝑗 ∶= ⟨𝐵𝑖 ⊗ 𝐵𝑗, 𝑄⟩
𝑔

and 𝑛𝑖 ∶= ⟨𝐵𝑖, 𝑛⟩𝑔 (𝑖, 𝑗 ∈ {1, 2})

𝐴(𝑄) ∶= 2
𝑠

(⟨𝐵1 ⊗ 𝐵1, 𝑄⟩𝑔 + i ⟨𝐵1 ⊗ 𝐵2, 𝑄⟩𝑔) = 2
𝑠

(𝑄11 + i𝑄12) ∈ 𝕊1 ⊂ ℂ

𝑍(𝑛) ∶= ⟨𝐵1, 𝑛⟩𝑔 + i ⟨𝐵2, 𝑛⟩𝑔 = 𝑛1 + i𝑛2 ∈ 𝕊1 ⊂ ℂ . ◀

Remark 5.9 (Squaring). 𝐴(𝑄) is defined in a way that we have 𝐴(𝑃(𝑛)) = 𝑍(𝑛)2. To
show this, let 𝑛∶ 𝑀 → 𝕊𝑀 and note that 𝑔♯♯ = 𝐵1 ⊗ 𝐵1 + 𝐵2 ⊗ 𝐵2 since (𝐵1, 𝐵2) is
orthonormal. Then

𝐴(𝑃(𝑛)) = 𝐴 (𝑠 (𝑛 ⊗ 𝑛 − 1
2

𝑔))

= 2
𝑠

(⟨𝐵1 ⊗ 𝐵1, 𝑠 (𝑛 ⊗ 𝑛 − 1
2

𝑔♯♯)⟩
𝑔

+ i ⟨𝐵1 ⊗ 𝐵2, 𝑠 (𝑛 ⊗ 𝑛 − 1
2

𝑔♯♯)⟩
𝑔
)

= 2𝑛1 · 𝑛1 − 2
2

⟨𝐵1 ⊗ 𝐵1, 𝑔♯♯⟩
𝑔

+ 2i𝑛1 · 𝑛2 − 2
2

i ⟨𝐵1 ⊗ 𝐵2, 𝑔♯♯⟩
𝑔

= (𝑛1)2 − (1 − (𝑛1)2) + 2i𝑛1𝑛2

= (𝑛1)2 − (𝑛2)2 + 2i𝑛1𝑛2 (|𝑛|2𝑔 = (𝑛1)2 + (𝑛2)2 = 1)

= (𝑛1 + i𝑛2)2 = 𝑍(𝑛)2 .

Since 𝒬𝑀 only consists of symmetric and trace-free tensors, 𝐴(𝑄) determines 𝑄 com-
pletely, so 𝐴 is a ℝ-linear bijection.

Ball and Zarnescu [BZ11] show that for flat two-dimensional domains with holes we
can check if a line field 𝑄 is orientable by checking if the winding numbers of 𝐴(𝑄) on
the boundaries are even. The winding number describes how often a function wraps
around the circle along a loop. If this is even you can find a square root 𝑍(𝑛) that wraps
around half as often. From [Hir97, pp. 120–130] and [Theorem A.3 dMGP91] we get that
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there exists a winding number for 𝑓 ∈ 𝑊 1
2 ,2(𝕊1, 𝕊1) (the codomain 𝕊1 as a subset of ℂ)

computed by

wind 𝑓 = 1
2𝜋𝑖

∫
𝕊1

𝑓−1 𝜕𝑓
𝜕𝜃

d𝜃 ∈ ℤ . (29)

These papers call the winding number ‘degree’ since it is special case of a more general
concept from differential geometry that also allows more than one dimension. But since
in our one-dimensional case the term ‘winding number’ is more self-explanatory we use it
here.

The integral in (29) is to be understood in the sense of distributions since 𝑓, 𝑓−1 ∈
𝑊 1

2 ,2(𝕊1, 𝕊1) and 𝜕𝑓
𝜕𝜃 ∈ 𝑊 − 1

2 ,2(𝕊1, 𝕊1). The winding number is is an integer and it is
invariant under sufficiently small perturbations of 𝑓. It is also invariant under repara-
metrisation and thus allows any loop as the domain. For some more discussion on the
degree, see Section 4 of [BZ11].

As mentioned above, a line field is orientable on a hole boundary, which is a loop, if
and only if the degree of 𝐴(𝑄) is even, as shown in Proposition 6 in [BZ11]. The same
proof can be used for our case.

Proposition 5.10 (Orientability on loops). Let 𝑄 ∈ 𝑊 1,2
q (𝒬𝕊𝑀) and let 𝛾∶ 𝕊1 → 𝑀

be a loop on 𝑀. Then Tr 𝑄 ∶= Tr𝛾(𝕊1) 𝑄 ∈ 𝑊
1
2 ,2
q (𝒬𝕊𝑀∣

𝛾(𝕊1)
)is orientable if and only

if wind(𝐴(Tr 𝑄)) ∈ 2ℤ. Moreover if it is orientable with 𝑛 ∈ 𝑊
1
2 ,2
q (𝕊𝑀|𝛾(𝕊1)) with

Tr 𝑄 = 𝑃(𝑛), then 2 wind(𝑛) = wind(Tr 𝑄).

Proof. (Tr𝛾(𝕊1) 𝐴(𝑄))∘𝛾 and (Tr𝛾(𝕊1) 𝑍(𝑛))∘𝛾 are 𝑊 1
2 ,2(𝕊1, 𝕊1)-functions by Theorem 3.20.

Therefore, the same proof as for Proposition 6 in Ball and Zarnescu [BZ11] holds.

For continuous line fields we already know that orientability can be checked on a set of
loops that generate the fundamental group. In order to use this for Sobolev line fields we
approximate them with smooth maps.

Theorem 5.11 (Density of smooth maps on surfaces). (from [Proposition in section
4 SU83]) Let 𝑀 be a 2-dimensional compact manifold. Let 𝑁 be a compact manifold
without boundary. Then, 𝐶∞(𝑀, 𝑁) is dense in 𝑊 1,2(𝑀, 𝑁).

Note that the authors denote 𝑊 1,2 by 𝐿2
1. As the authors show, this is in general not

true if 𝑀 is of higher dimension.
Now we are ready to prove how to characterize orientable Sobolev line fields on surfaces.

The ideas for the proof stem from Proposition 7 of [BZ11].

Theorem 5.12 (Orientability of Sobolev line fields on surfaces). Let 𝑄 ∈ 𝑊 1,2
q (𝒬𝕊𝑀)

where 𝑀 is a Riemannian orientable surface such that there exists a smooth tangent unit
vector field on 𝑀. Choose a finite set of loops 𝐺 at a common point 𝑝0 that generate the
fundamental group 𝜋1(𝑀, 𝑝0). Then, 𝑄 is orientable if and only if wind (𝐴 (Tr𝛾(𝕊1) 𝑄)) ∈
2ℤ for all 𝛾∶ 𝕊1 → 𝑀 in 𝐺.

Remark 5.13 (Fundamental group is finitely generated). Theorem 5.12 assumes that
the fundamental group 𝜋1(𝑀, 𝑝0) of a surface is finitely generated. For boundaryless
orientable compact surfaces this is shown by section 17c of [Ful97] with the standard form
for those surfaces. For surfaces with boundaries a proof outline is given by MartianInvader
[Mar14]:
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Differentiable manifolds can always be given the structure of PL [piece-wise
linear] manifolds, which can be triangulated into simplicial complexes. By
shrinking a spanning tree of the 1-skeleton of this simplicial complex, we can
obtain a CW complex 𝑋 with a single 0-cell. This complex is no longer a
manifold, but has the same fundamental group as the original manifold, since
quotiening out by a contractible subspace is a homotopy equivalence.
If the manifold is compact, it has a simplicial decomposition with a finite
number of cells. This carries over to 𝑋. But the fundamental group of a CW
complex with a single 0-cell has a presentation with a generator for each 1-cell
and a relation for each 2-cell. Thus 𝑋, and therefore the original manifold,
has a finitely presented fundamental group.

Proof. The first direction is proven in the previous section by Proposition 5.7 together
with Proposition 5.7. For the opposite direction let 𝑄 ∈ 𝑊 1,2

q (𝒬𝕊𝑀) with the given
winding number conditions. Approximate 𝑄 with a sequence 𝑄(𝑘) in 𝐶1(𝒬𝕊𝑀) in
𝑊 1,2

q (𝒬𝕊𝑀) by Theorem 5.11. We will show that 𝑄(𝑘) is orientable for sufficiently
large 𝑘. Take any loop 𝛾 ∈ 𝐺. The winding number of 𝑄 along this loop is even
by assumption: wind (𝐴 (Tr𝛾(𝕊1) 𝑄)) ∈ 2ℤ. Since the Tr operator is continuous by
Theorem 3.20 ∥𝐴(Tr𝛾(𝕊1) 𝑄) − 𝐴(Tr𝛾(𝕊1) 𝑄(𝑘))∥𝑊

1
2 ,2

tends to 0 as 𝑘 → ∞. Now we use
that the winding number is stable under small perturbations. For this we employ the
following result.:

Theorem 5.14 (BMO continuity of the degree). (Theorem 1 from [Theorem 1 BN95])
Let 𝑢 ∈ VMO(𝑋, 𝑌 ) where 𝑋 and 𝑌 are smooth compact manifolds without boundaries.
Then there exists 𝛿 > 0 depending on 𝑢, such that if 𝑣 ∈ VMO(𝑋, 𝑌 ) and dist(𝑢, 𝑣) < 𝛿,
then deg(𝑣) = deg(𝑢).

We use this theorem with 𝑋 = 𝑌 = 𝕊1 and deg = wind as mentioned above. The
space VMO is the space of measurable functions of vanishing mean oscillations. Its norm
is the BMO-norm (bounded mean oscillation). The important information for us is that
VMO is a superspace of 𝑊 1

2 ,2 with continuous injection. This is shown in Example 2,
case 2 in the same work [BN95]. That means that ∥𝐴(Tr𝛾(𝕊1) 𝑄) ∘ 𝛾 ∥

BMO
< ∞ and there

is some 𝐶 > 0 such that for all 𝑘 ∈ ℕ

∥𝐴(Tr𝛾(𝕊1) 𝑄) ∘ 𝛾 − 𝐴(Tr𝛾(𝕊1) 𝑄(𝑘)) ∘ 𝛾 ∥
BMO

≤ 𝐶 ∥𝐴(Tr𝛾(𝕊1) 𝑄) ∘ 𝛾 − 𝐴(Tr𝛾(𝕊1) 𝑄(𝑘)) ∘ 𝛾 ∥
𝑊

1
2 ,2

→ 0, 𝑘 → ∞ .

Hence wind(𝐴(Tr𝛾(𝕊1) 𝑄(𝑘))) = wind(𝐴(Tr𝛾(𝕊1) 𝑄)) ∈ 2ℤ for all sufficiently large 𝑘. By
Proposition 5.10 this means that Tr𝛾(𝕊1) 𝑄(𝑘) is orientable in 𝑊 1

2 ,2. In order to use the
theory for continuous line fields we need to show that Tr𝛾(𝕊1) 𝑄(𝑘) is also orientable in the
class of continuous unit vector fields. This is shown by [BZ11] together with [dMGP91].
Recall that 𝑄(𝑘) is smooth by definition.

Theorem 5.15 (Continuous and 𝑊 1
2 ,2 orientability on the line). ([Lemma 9 BZ11])

Let 𝐼 ⊂ ℝ be an open set. Take 𝑓∶ 𝐼 → ℝ be such that 𝑓 ∈ 𝑊 1
2 ,2(𝐼, ℝ) and 𝑓2 ∈ 𝐶(𝐼, ℝ).

Then, there exists 𝑓∗ ∈ 𝐶(𝐼, ℝ) so that 𝑓∗ = 𝑓 almost everywhere on 𝐼.

Theorem 5.16 (Angle function). ([Theorem A.3 dMGP91]) Let 𝑓 be a function of
Sobolev class 𝑊 1

2 ,2 from the circle 𝕊1 to itself. Then, there exists an integer 𝑛 and
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a real function 𝑔 ∈ 𝑊 1
2 ,2 on 𝕊1, unique up to an integral multiple of 2𝜋, such that

𝑓 = 𝑧𝑛 exp(i𝑔). The winding number 𝑛 is given by 𝑛 = 1
2𝜋i ∫

𝕊1 𝑓−1 𝜕𝑓
𝜕𝑥 d𝑥.

Since 𝐺 is finite, there is some 𝑘0 ∈ ℕ such that for all 𝑘 > 𝑘0 and all 𝛾 ∈ 𝐺, Tr𝛾(𝕊1) 𝑄(𝑘)

is orientable in 𝑊 1
2 ,2. At this point we apply Theorem 4.4 to see that those 𝑄(𝑘) are

orientable with 𝑛(𝑘) ∈ 𝐶(𝕊𝑀) such that 𝑃(𝑛(𝑘)) = 𝑄(𝑘). Lemma 3.11 shows that the
𝑛(𝑘)’s are in 𝑊 1

2 ,2. This is necessary to find a limit of the 𝑛(𝑘)’s. Lemma 3.11 was intended
for fields into a surrounding Euclidean space but the statement holds for 𝑁 = 2 = 𝑚
as well. The lemma uses the projection operator 𝑃𝑁, but as defined in Definition 3.9
𝑃 differs from 𝑃𝑁 merely by the affine linear transformation 𝑄𝑝 ↦ 𝑄𝑝

𝑠 + 1
𝑚𝑔♯♯ with the

smooth and bounded 𝑔♯♯. So the result is also applicable here.
Now we have a sequence of line fields that converges in norm and which elements

are orientable in 𝑊 1,2. This is a stronger statement than in the previous Section 5.1
where we dealt with weak convergence. So it natural to expect that the orientations
𝑛(𝑘) also converge in norm. However, this is not the case since there are always two
possible orientations for each 𝑄(𝑘) and hence the 𝑛(𝑘)’s can ‘swap back and forth’ instead
of converging.

Therefore, we employ Proposition 5.2 again to show that a subsequence of the 𝑛(𝑘)’s
converge weakly. Proposition 5.2 is mainly intended for fields on a manifold into a
surrounding Euclidean space but it is also valid for 𝒬𝕊′ℝ𝑁 for any 𝑁 ∈ ℕ. Instead of
𝒬𝕊′ℝ2, the line fields here map into 𝒬𝕊ℝ2. Those two spaces are related via the affine
transformation 𝑄 ↦ 𝑄

𝑠 + 1
𝑚𝑔♯♯ and therefore Proposition 5.2 is also applicable here.

Hence, there exists �̃� ∈ Γ𝑊 1,2

q (𝕊𝑀) with 𝑃𝑁(�̃�) = 𝑄
𝑠 + 1

𝑚𝑔♯♯ and thus 𝑃(𝑛) = 𝑄 and 𝑄
is orientable.

6 Orientability of minimizers of the harmonic energy

Models for liquid crystals should not only describe the matter, but also predict how it
reacts under conditions enforced from outside. These conditions include, among others,
the domain, boundary conditions and electrical or magnetic fields. They are modeled
as a minimization problem and the functionals to be minimized are called energies. As
mentioned in the introduction one common energy is the Frank–Oseen energy. In the
simplest form it is the harmonic energy

ℐ(𝑄) ∶= ∫
𝑀

|∇𝑄|2 d𝑉𝑔 . (30)

It would be good to know if the minimizer is orientable before it is calculated. Ball and
Zarnescu [BZ11] show that a condition exists for flat 2-dimensional domains with holes.
Unfortunately the transfer of this result to surfaces is beyond the scope of this thesis
because it heavily depends of other results that are specific to this kind of domain.

Therefore this section will be restricted to a note on how the harmonic energy of a
unit vector fields and its corresponding line field relate and an example on a torus where
a line field minimizer is not orientable. This shows that the question is also relevant to
the manifold setting.

Remark 6.1 (Harmonic energy). For an orientable line field the energy of the line field
and the corresponding unit vector fields have a simple correlation. Let (𝐸𝑖)𝑖 be a local
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orthonormal frame of 𝑇 𝑀 with coframe 𝜀𝑖. Then

|∇𝑃(𝑛)|2𝑔 = ∣∇ (𝑠 (𝑛 ⊗ 𝑛 − 1
𝑚

𝑔♯♯))∣
2

𝑔

= ⟨𝑠∇(𝑛 ⊗ 𝑛) − 1
𝑚

∇𝑔, 𝑠∇(𝑛 ⊗ 𝑛) − 1
𝑚

∇𝑔⟩
𝑔

= 𝑠2 ⟨∇𝐸𝑖
𝑛 ⊗ 𝑛 ⊗ 𝜀𝑖 + 𝑛 ⊗ ∇𝐸𝑖

𝑛 ⊗ 𝜀𝑖,

∇𝐸𝑖
𝑛 ⊗ 𝑛 ⊗ 𝜀𝑖 + 𝑛 ⊗ ∇𝐸𝑖

𝑛 ⊗ 𝜀𝑖⟩
𝑔

(𝑔 is parallel)

= 𝑠2 (⟨∇𝐸𝑖
𝑛, ∇𝐸𝑖

𝑛⟩
𝑔

⟨𝑛, 𝑛⟩𝑔 ⟨𝜀𝑖, 𝜀𝑖⟩
𝑔

+ ⟨∇𝐸𝑖
𝑛, 𝑛⟩

𝑔
⟨𝑛, ∇𝐸𝑖

𝑛⟩
𝑔

⟨𝜀𝑖, 𝜀𝑖⟩
𝑔

+ ⟨𝑛, ∇𝐸𝑖
𝑛⟩

𝑔
⟨∇𝐸𝑖

𝑛, 𝑛⟩
𝑔

⟨𝜀𝑖, 𝜀𝑖⟩
𝑔

+ ⟨𝑛, 𝑛⟩𝑔 ⟨∇𝐸𝑖
𝑛, ∇𝐸𝑖

𝑛⟩
𝑔

⟨𝜀𝑖, 𝜀𝑖⟩
𝑔
)

= 𝑠2 (2 |∇𝑛|2𝑔 · 1 + 0 · 0 · 1 + 0 · 0 · 1) = 2𝑠2 |∇𝑛|2𝑔 .

Here we use ⟨𝑛, 𝑛⟩𝑔 = 1 and

0 = 1
2

∇𝐸𝑖
(⟨𝑛, 𝑛⟩𝑔) = 1

2
⟨∇𝐸𝑖

𝑛, 𝑛⟩
𝑔

+ 1
2

⟨𝑛, ∇𝐸𝑖
𝑛⟩

𝑔
= ⟨∇𝐸𝑖

𝑛, 𝑛⟩
𝑔

.

Therefore we define the harmonic energy as

ℐ∶ Γ𝑊 ∇,2(𝒬𝕊𝑀) → ℝ

ℐ(𝑄) ∶= ∫
𝑀

|∇𝑄|2𝑔 d𝑉𝑔

𝒥∶ Γ𝑊 ∇,2(𝕊𝑀) → ℝ

𝒥(𝑛) ∶= 2𝑠2 ∫
𝑀

|∇𝑛|2𝑔 d𝑉𝑔

such that 𝒥 = ℐ ∘ 𝑃 .

Before [BZ11] develops in chapter 5 the orientability criterion for minimizers on
punctured flat domains, it presents an example of a domain that allows orientable and
non-orientable minimizers of the harmonic energy and a boundary condition that forces
the minimizer to be non-orientable. This domain is called the stadium domain because
of its shape depicted in Figure 7. Now we want to find a similar example on the torus.

The stadium domain contains two holes to allow a boundary conditions that does
not completely determine if the line field is orientable: there is no condition on the
boundary of the holes and the outer boundary is a closed curve that is homotopic to the
concatenation of the two generators of the fundamental group. On the outer boundary,
the line field has a winding number of 1 (i. e. the auxiliary vector field 𝐴(𝑄) has a winding
number of 2) that gets split into two halfs for the non-orientable minimizer.

The fundamental group of the torus also has generators. In order to create a similar
scenario, we take a line field with winding number 1 on the concatenation of the generators
as shown in Figure 8.

In order to have simple calculations we use a flat metric on the torus. That is,
we define the torus as the quotient 𝕋2 ∶= ℝ2/ℤ2 = {[𝑥, 𝑦] ∣ (𝑥, 𝑦) ∈ ℝ2} with [𝑥, 𝑦] =
{(𝑥 + 𝑘, 𝑦 + 𝑙) | 𝑘, 𝑙 ∈ ℤ} as depicted in Figure 8. The coordinates induced by ℝ2 are

42



Figure 7: The stadium domain with the boundary condition that allows orientable and
non-orientable minimizers of the harmonic energy. The boundary condition
only predefines the line field on the outer boundary while the values on the
hole boundaries are free. From [Chapter 5 BZ11].

𝑥

𝑦

ℝ2
𝕋2

𝛾

𝑄

(0, 0) (1, 0)

(0, 1) (1, 1)

(a) The ‘boundary’ condition (31) in red.

𝑥

𝑦

�̂�

𝛾

(0, 0) (1, 0)

(0, 1) (1, 1)

(b) The unorientable candidate for energy
minimization �̂� on 𝕋2

Figure 8: The 2-dimensional torus as the quotient 𝕋2 = ℝ2/ℤ2 with the diagonal 𝛾. The
colored edges of the square indicate how opposite sides of the unit square are
identified to define the torus.
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called 𝑥 and 𝑦, the metric is 𝑔 = (d𝑥)2 + (d𝑦)2. The covariant derivative is the usual
Euclidean derivative and the area element d𝑉𝑔 is d𝑥 ⊗ d𝑦.

The torus does not have a boundary on which we can fix a condition. So we use the
closed curve given by the image of 𝛾∶ [0, 1] → 𝕋2, 𝛾(𝑡) ∶= [𝑡, 𝑡] and set the ‘boundary’
condition drawn in Figure 8a.

𝑄𝛾(𝑡) ∶= 𝑃(𝑛𝛾(𝑡) ⊗ 𝑛𝛾(𝑡)) with 𝑛𝛾(𝑡) ∶= sin(2𝜋𝑡) 𝜕
𝜕𝑥

+ cos(2𝜋𝑡) 𝜕
𝜕𝑦

(31)

One obvious candidate for minimizing the harmonic energy is given by translating the
values on 𝛾 perpendicular to 𝛾:

�̂�[𝑥,𝑦] ∶= 𝑃(�̂�[𝑥,𝑦])

with �̂�[𝑥,𝑦] ∶= sin (2𝜋𝑥 + 𝑦
2

) 𝜕
𝜕𝑥

+ cos (2𝜋𝑥 + 𝑦
2

) 𝜕
𝜕𝑦

=∶ �̂�1 𝜕
𝜕𝑥

+ �̂�2 𝜕
𝜕𝑦

.

Figure 8b shows �̂�. Note that �̂� is not well-defined since sin(2𝜋𝑥+1+𝑦
2 ) = − sin(2𝜋𝑥+𝑦

2 )
and analogously for 𝑦 and �̂�2 but since 𝑃(−�̂�) = 𝑃(�̂�), the corresponding line field �̂� is
well-defined. We calculate the harmonic energy of �̂� by choosing one of the two options
for �̂�. For 𝒥 this choice is irrelevant.

1
2𝑠2 ℐ(�̂�) = 1

2𝑠2 𝒥(�̂�)

= ∫
𝑇 2

|∇�̂�|2𝑔 d𝑥 ⊗ d𝑦

= ∫
1

0
∫

1

0
∣𝜕𝑥�̂�1

𝜕
𝜕𝑥

⊗ 𝜕
𝜕𝑥

+ 𝜕𝑥�̂�2
𝜕
𝜕𝑦

⊗ 𝜕
𝜕𝑥

+ 𝜕𝑦�̂�1
𝜕

𝜕𝑥
⊗ 𝜕

𝜕𝑦
+ 𝜕𝑦�̂�2

𝜕
𝜕𝑦

⊗ 𝜕
𝜕𝑦

∣
2

𝑔
d𝑥 d𝑦

= ∫
1

0
∫

1

0
(𝜋 cos (2𝜋𝑥 + 𝑦

2
))

2
+ (−𝜋 sin (2𝜋𝑥 + 𝑦

2
))

2

+ (𝜋 cos (2𝜋𝑥 + 𝑦
2

))
2

+ (−𝜋 sin (2𝜋𝑥 + 𝑦
2

))
2

d𝑥 d𝑦

= 𝜋2 ∫
1

0
∫

1

0
1 + 1 d𝑥 d𝑦 = 2𝜋2

In order to find a lower limit of the energy of orientable line fields we look again at
the diagonals perpendicular to 𝛾. Let 𝑄 ∈ Γ𝑊 ∇,2(𝒬𝕊𝕋2) be orientable and fulfill the
‘boundary’ condition. Let 𝑛 ∈ Γ𝑊 ∇,2(𝕊𝕋2) an orientation of 𝑄: 𝑃(𝑛) = 𝑄. By using
suitable coordinates and employing the ACL characterisation Theorem 3.10 we see that
𝑄 is continuous on almost all diagonals 𝐷𝑧 ∶= {[𝑥, 𝑦] | 𝑥 + 𝑦 = 𝑧 + 𝑘, 𝑘 ∈ ℤ} for 𝑧 ∈ [0, 1].
In Figure 9 we see that a unit vector field must turn around between the intersections
with 𝛾 whereas �̂� stays constant. Therefore we expect a higher harmonic energy for 𝑄
than for �̂�.

To make this precise, we calculate the harmonic energy on some diagonal 𝐷𝑧 for
𝑧 ∈ [0, 1] where 𝑄 is continuous. Here 𝑣 = 2− 1

2 ( 𝜕
𝜕𝑥 − 𝜕

𝜕𝑦) is the direction of the diagonal.
The intersections with 𝛾 are at [ 𝑧

2 , 𝑧
2 ] and [𝑧+1

2 , 𝑧+1
2 ].
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𝑥

𝑦

𝛾

𝐷0

𝐷 1
4

𝐷 1
2

𝐷 3
4

𝐷1
𝐷0

𝐷 1
4

𝐷 1
2

𝐷 3
4

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 9: The diagonals 𝐷𝑧 for 𝑧 = 1
4 , 1

2 , 3
4 , 1 together with one of the two possible

orientations for the ‘boundary’ condition.

∫
𝐷𝑧

|∇𝑛|2 d𝑉𝑔 = ∫
1

0
∣∇𝑛[𝑠,𝑧−𝑠]∣

2 √
2 d𝑠 (transformation law: d𝑠 = d𝑥 − d𝑦)

≥
√

2 ∫
1

0
∣∇𝑣𝑛[𝑠,𝑧−𝑠]∣

2
d𝑠

=
√

2 ∫
1

0
∣2− 1

2
d
d𝑠

𝑛[𝑠,𝑧−𝑠]∣
2

d𝑠 (chain rule,d(𝑠, 𝑧 − 𝑠)
d𝑠

=
√

2𝑣)

≥ 1√
2

(∫
1

0
∣ d
d𝑠

𝑛[𝑠,𝑧−𝑠]∣ d𝑠)
2

(Jensen inequality)

= 1√
2

(∫
𝑧+1

2

𝑧
2

∣ d
d𝑠

𝑛[𝑠,𝑧−𝑠]∣ d𝑠 + ∫
𝑧
2 +1

𝑧+1
2

∣ d
d𝑠

𝑛[𝑠,2𝑧−𝑠]∣ d𝑠)
2

= 1√
2

(length(𝕊1
≥0) + length(𝕊1

≤0))2

= 1√
2

(𝜋 + 𝜋)2 = 4√
2

𝜋2

Hence 1
2𝑠

𝒥(𝑛) = ∫
𝕋2

|∇𝑛(𝑠)|2 d𝑉𝑔(𝑠)

= ∫

√
2

2

0
∫

𝐷𝑧

|∇𝑛(𝑠)|2 d𝑠 d𝑧 ≥ 4
√

2
2
√

2
𝜋2 = 2𝜋2 = 1

2𝑠
ℐ(�̂�)

In order to have 𝒥(𝑛) ≤ ℐ(�̂�), the estimate |∇𝑛| ≥ |∇𝑣𝑛| must be sharp almost
everywhere on almost every diagonal 𝐷𝑧. That means that for the perpendicular direction
𝑣⊥ = 2− 1

2 ( 𝜕
𝜕𝑥 + 𝜕

𝜕𝑦) we have ∇𝑣⊥𝑛 = 0 almost everywhere which makes 𝑛 constant in
this direction. This contradicts the ‘boundary’ condition which is not constant in the
direction 𝑣⊥. Therefore, the minimizer in the class of all line fields has a lower harmonic
energy than the minimizer in the class of orientable line fields. Consequently, in this case,
it is necessary to use the 𝑄-tensor model and not sufficient to consider the Frank–Oseen
model.
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7 Outlook
The goal of thesis is to generalise the orientability results of [BZ11] to non-Euclidean
domains. We do generalise the orientability criteria for Sobolev line fields on simply-
connected domains and on two-dimensional domains. On the other hand we do not
generalise the criteria for orientability of energy minimizers of the harmonic energy on
two-dimensional domains. Therefore this can be pursued next.

While proving the orientability criterion on surfaces, we are limited to orientable
surfaces because unorientable surfaces do not have a global frame. The other two main
proof ingredients, namely the approximation result Theorem 5.11 and the orientability
criterion for continuous line fields, hold on unorientable surfaces as well. Therefore,
further work could search for a technique to transfer the orientability on loops to smooth
approximations. In the case of orientable surfaces, this technique is the winding number.

Both orientability criteria are also limited by the exponent 𝑞 which could not be less
than 2. Indeed, Figure 2 in [BZ11] shows that for 𝑞 < 2 there exist non-orientable Sobolev
line fields on simply-connected domains. This example contains a so-called ‘defect’, a
point where no direction can be continuously defined. The study of defects is central in a
lot of liquid crystal research [Nit+18; NV12]. Hence it is a serious limitation of [BZ11]
and this thesis to exclude those cases. Therefore, the study of orientability criteria for
𝑞 < 2 provides a range of possible further research.

In order to generalise the orientability criterion on surfaces to manifolds of higher
dimension, we need at least two new ideas. First the approximation theorem Theorem 5.11
is limited to two-dimensional manifolds. Secondly we need a way to transfer the orient-
ability on loops from a Sobolev line field to the smooth approximations. Good ideas are
needed to, maybe using the degree as the natural generalisation of the winding number
to higher dimensions.
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